(-2xy+3)(xy-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=-2xy+xy+xy^2=-xy+xy^2
Bậc là 3
b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)
Bậc là 4
c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)
Bậc là 5
d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)
bậc là 3
e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)
=-2x^2+2z^4-y^3
Bậc là 4
f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)
Bậc là 4
\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)
\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)
Câu a pt đầu là \(x^2+2xy^2=3\) hay \(x^3+2xy^2=3\) vậy nhỉ? Nhìn \(x^2\) chẳng hợp lý chút nào
b. \(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(xy+1\right)-y\left(xy+1\right)+xy+1=2\\\left(x^4+y^2-2x^2y\right)+xy+1=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y\right)\left(xy+1\right)+xy+1=2\\\left(x^2-y\right)^2+xy+1=2\end{matrix}\right.\)
Trừ vế cho vế:
\(\left(x^2-y\right)\left(xy+1\right)-\left(x^2-y\right)^2=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(xy+1-x^2+y\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left[y\left(x+1\right)+\left(x+1\right)\left(1-x\right)\right]=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(x+1\right)\left(y+1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x^2\\x=-1\\y=x-1\end{matrix}\right.\)
- Với \(y=x^2\) thế xuống pt dưới:
\(x^4+x^4-x^3\left(2x-1\right)=1\Leftrightarrow x^3=1\Leftrightarrow...\)
....
Hai trường hợp còn lại bạn tự thế tương tự
a/ Bạn coi lại đề, \(2\sqrt[3]{2xy}\) hay \(2\sqrt[3]{2}.xy\)
Như đề bạn ghi thì ko rút gọn được
b/ Xét \(\frac{x}{x^4+4}=\frac{x}{x^4+4x^2+4-\left(2x\right)^2}=\frac{x}{\left(x^2+2\right)^2-\left(2x\right)^2}\)
\(=\frac{x}{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}=\frac{1}{4}\left(\frac{1}{x^2+2-2x}-\frac{1}{x^2+2+2x}\right)\)
Thay \(x=2n-1\) ta được:
\(\frac{2n-1}{4+\left(2n-1\right)^4}=\frac{1}{4}\left(\frac{1}{\left(2n-1\right)^2-2\left(2n-1\right)+2}-\frac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\right)=\frac{1}{4}\left(\frac{1}{4\left(n-1\right)^2+1}-\frac{1}{4n^2+1}\right)\)
\(\Rightarrow VT=\frac{1}{4}\left(\frac{1}{4\left(1-1\right)^2+1}-\frac{1}{4.1^2+1}+\frac{1}{4.1^2+1}-\frac{1}{4.2^2+1}+...+\frac{1}{4\left(n-1\right)^2+1}-\frac{1}{4n^2+1}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{4n^2+1}\right)=\frac{1}{4}\left(\frac{4n^2}{4n^2+1}\right)=\frac{n^2}{4n^2+1}\)
\(a,-x^2y-2xy+2x^2y+5xy+2\\ =x^2y+3xy+2\\ b,-2xy+\dfrac{3}{2}xy^2+\dfrac{1}{2}xy^2+xy\\ =-xy+2xy^2\)
1.
\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)
\(=2x^3y^2-3x^2y^2+7x^2y\)
\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)
\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)
\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3\)
2.
\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)
\(=24xy+4x-6y-1-24xy-4x\)
\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)
\(=-6y-1\)
#Toru
\(\left(\frac{1}{3}x+2\right)\left(3x-6\right)\)
\(=\frac{1}{3}x\left(3x-6\right)+2\left(3x-6\right)\)
\(=x^2-2x+6x-12\)
\(=x^2+4x-12\)
\(\left(x^2-3x+9\right)\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x^3+27\)
a) (1/3x+2).(3x-6) = (1/3x.3x)+(1/3x.-6)+(2.3x)+(2.-6) = x^2-2x+6x-12 = x^2+4x-12 = x^2+2x2+2^2-16 = (x+2)^2-16
b) (x^2-3x+9).(x+3) = (x^2.x)+(x^2.3)+(-3x.x)+(-3x.3)+(9.x)+(9.3) = x^3+3x^2-3x^2-9x+9x+27 = x^3+27
c) (-2xy+3).(xy-1) = (-2xy.xy)+(-2xy.-1)+(3.xy)+(3.-1) = -2x^2y^2+2xy+3xy-3 = -2x^2y^2+5xy-3
d) x(xy-1).(xy+1) = (x^2y-x).(xy+1) = (x^2y.xy)+(x^2y.1)+(-x.xy)+(-x.1) = x^3y^2+x^2y-x^2y-x = x^3y^2-x