K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2018

mk lm k chắc đúng, sai đâu ib mk nhé

DKXD:  \(x\ge-\frac{1}{2};\)\(x\ne0\)

Dat:   \(\sqrt{2x+1}=a\)  \(\left(a\ge0;a\ne1\right)\)

Khi đó bpt đã cho trở thành:

\(\frac{a^2-1}{a-1}>a^2+1\)

<=>  \(a+1>a^2+1\)

<=>  \(a\left(1-a\right)>0\)

<=>  \(1-a>0\)

<=>  \(a< 1\)

Khi đó:  \(\sqrt{2x+1}< 1\)   

<=>  \(2x+1< 1\)

<=>   \(x< 0\)

Vay:    \(-\frac{1}{2}\le x< 0\)

11 tháng 2 2017

Dk 1<x<2

√x^2 -x -2<x+2

5x+6>0

X > -6/5

Bpt vô nghiệm

NV
1 tháng 3 2022

ĐKXĐ: \(x>0\)

\(3\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< 2\left(x+\dfrac{1}{4x}+1\right)-9\)

\(\Leftrightarrow3\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< 2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-9\)

Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a>0\)

\(\Rightarrow3a< 2a^2-9\Rightarrow2a^2-3a-9>0\)

\(\Rightarrow\left(a-3\right)\left(2a+3\right)>0\)

\(\Rightarrow a-3>0\Rightarrow a>3\)

\(\Rightarrow\sqrt{x}+\dfrac{1}{2\sqrt{x}}>3\Leftrightarrow2x+1>6\sqrt{x}\)

\(\Leftrightarrow2x-6\sqrt{x}+1>0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}>\dfrac{3+\sqrt{7}}{2}\\0\le\sqrt{x}< \dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>\dfrac{8+3\sqrt{7}}{2}\\0\le x< \dfrac{8-3\sqrt{7}}{2}\end{matrix}\right.\)

30 tháng 3 2016

<=>\(\sqrt{2x+1}-1>\frac{2x}{2x}+\frac{2x}{2}\)=1+x

=>x+1-\(\sqrt{2x+1}\)+1<0

nhân 2 vô 2x+1-\(2\sqrt{2x+1}\)+1+1<0

30 tháng 3 2016

bạn nói cụ thể hơn đc ko @ tuấn

24 tháng 9 2018

\(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}}=1-2x^2\)

\(\Leftrightarrow\sqrt{\frac{x^2+2x\sqrt{1-x^2}+1-x^2}{2}}=1-2x^2\)

\(\Leftrightarrow\sqrt{\frac{\left(x+\sqrt{1-x^2}\right)^2}{2}}=1-2x^2\)

\(\Leftrightarrow\frac{x+\sqrt{1-x^2}}{\sqrt{2}}=1-2x^2\)

Làm nôt

5 tháng 6 2018

a/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)

\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=4\)

\(\Leftrightarrow x+\sqrt{x+\frac{1}{4}}+\frac{1}{2}=4\)

Làm nốt

5 tháng 6 2018

b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)

\(\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

Làm nốt