\(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}< 2x+\dfrac{1}{2x}-7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2022

ĐKXĐ: \(x>0\)

\(3\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< 2\left(x+\dfrac{1}{4x}+1\right)-9\)

\(\Leftrightarrow3\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< 2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-9\)

Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a>0\)

\(\Rightarrow3a< 2a^2-9\Rightarrow2a^2-3a-9>0\)

\(\Rightarrow\left(a-3\right)\left(2a+3\right)>0\)

\(\Rightarrow a-3>0\Rightarrow a>3\)

\(\Rightarrow\sqrt{x}+\dfrac{1}{2\sqrt{x}}>3\Leftrightarrow2x+1>6\sqrt{x}\)

\(\Leftrightarrow2x-6\sqrt{x}+1>0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}>\dfrac{3+\sqrt{7}}{2}\\0\le\sqrt{x}< \dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>\dfrac{8+3\sqrt{7}}{2}\\0\le x< \dfrac{8-3\sqrt{7}}{2}\end{matrix}\right.\)

17 tháng 8 2017

b/ \(\sqrt{12-\dfrac{12}{x^2}}+\sqrt{x^2-\dfrac{12}{x^2}}=x^2\)

\(\Leftrightarrow x-\sqrt{12-\dfrac{12}{x^2}}=\sqrt{x^2-\dfrac{12}{x^2}}\)

Bình phương 2 vế rút gọn

\(\Leftrightarrow x^4-x^2-4\sqrt{3\left(x^4-x^2\right)}+12=0\)

Đặt \(\sqrt{x^4-x^2}=a\)

\(\Rightarrow a^2-4\sqrt{3}a+12=0\)

\(\Leftrightarrow a=2\sqrt{3}\)

\(\Leftrightarrow x^4-x^2=12\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

17 tháng 8 2017

Câu a xem lại đề đúng không b. Do nghiệm xấu lắm

3 tháng 3 2019

1.ĐK: \(x\ge\dfrac{1}{4}\)

bpt\(\Leftrightarrow5x+1+4x-1-2\sqrt{20x^2-x-1}< 9x\)

\(\Leftrightarrow2\sqrt{20x^2-x-1}>0\)

\(\Leftrightarrow20x^2-x-1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{-1}{5}\\x>\dfrac{1}{4}\end{matrix}\right.\)

2.ĐK: \(-2\le x\le\dfrac{5}{2}\)

bpt\(\Leftrightarrow x+2+3-x-2\sqrt{-x^2+x+6}< 5-2x\)

\(\Leftrightarrow2x< 2\sqrt{-x^2+x+6}\)

\(\Leftrightarrow x^2< -x^2+x+6\)

\(\Leftrightarrow-2x^2+x+6>0\)

\(\Leftrightarrow\dfrac{-3}{2}< x< 2\)

3. ĐK: \(\left\{{}\begin{matrix}12+x-x^2\ge0\\x\ne11\\x\ne\dfrac{9}{2}\end{matrix}\right.\)

.bpt\(\Leftrightarrow\sqrt{12+x-x^2}\left(\dfrac{1}{x-11}-\dfrac{1}{2x-9}\right)\ge0\)

\(\Leftrightarrow\sqrt{-x^2+x+12}.\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)

\(\Rightarrow\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)

\(\Leftrightarrow\dfrac{x+2}{2x^2-31x+99}\ge0\)

*Xét TH1: \(\left\{{}\begin{matrix}x+2\ge0\\2x^2-31x+99>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x< \dfrac{9}{2}\\x>11\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2\le x< \dfrac{9}{2}\\x>11\end{matrix}\right.\)

*Xét TH2: \(\left\{{}\begin{matrix}x+2\le0\\2x^2-31x+99< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-2\\\dfrac{9}{2}< x< 11\end{matrix}\right.\)\(\Rightarrow\dfrac{9}{2}< x< 11\)

2 tháng 7 2017

mấy câu này chắc xài giá trị tuyệt đối

đăng ít thôi bn sợ quá :))

2 tháng 4 2017

a) \(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\)

\(\Leftrightarrow x+\dfrac{x+5}{x+3}=\dfrac{x+5}{x+3}\)

\(\Leftrightarrow x=0\)

b) \(2x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+\dfrac{x\left(x-1\right)+3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}-x\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x\left(x-1\right)}{x-1}\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x^2+x}{x-1}\)

\(\Leftrightarrow x^2-x+3=3x-x^2+x\) ( điều kiện \(x\ne1\) )

\(\Leftrightarrow2x^2-5x+3=0\)

\(\Delta=b^2-4ac\)

\(\Delta=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=1\left(loại\right)\end{matrix}\right.\)

Vậy \(x=\dfrac{3}{2}\)

c) \(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\)

\(\Leftrightarrow x^2-4x-2=\sqrt{\left(x-2\right)^2}\) ( điều kiện \(x>2\) )

\(\Leftrightarrow x^2-4x-2=x-2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\end{matrix}\right.\)

Vậy \(x=5\)

d) \(\dfrac{2x^2-x-3}{\sqrt{2x-3}}=\sqrt{2x-3}\)

\(\Leftrightarrow2x^2-x-3=\sqrt{\left(2x-3\right)^2}\) ( điều kiện \(x>\dfrac{3}{2}\) )

\(\Leftrightarrow2x^2-x-3=2x-3\)

\(\Leftrightarrow2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

a: \(\Leftrightarrow\dfrac{x\left(x^2-1\right)+x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{\left(2x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

=>\(x^3-x+x-1=2x^2+x-1\)

=>x^3-2x^2-x=0

=>x(x^2-2x-1)=0

=>x=0 hoặc \(x\in\left\{1+\sqrt{2};1-\sqrt{2}\right\}\)

c: =>(x-1)(x-2) căn 2x-3=0

=>\(x\in\left\{\dfrac{3}{2};2\right\}\)

8 tháng 4 2017

a) ĐKXĐ: D = {x ∈ R/x ≠ 0 và x + 1 ≠ 0} = R\{0;- 1}.

b) ĐKXĐ: D = {x ∈ R/x2 - 4 ≠ 0 và x2 - 4x + 3 ≠ 0} = R\{±2; 1; 3}.

c) ĐKXĐ: D = R\{- 1}.

d) ĐKXĐ: D = {x ∈ R/x + 4 ≠ 0 và 1 - x ≥ 0} = (-∞; - 4) ∪ (- 4; 1].

20 tháng 11 2018

\(\dfrac{2}{\sqrt{x+1}+\sqrt{3-x}}=1+\sqrt{3+2x-x^2}\) ( đk \(-1\le x\le3\) )

đặt \(t=\sqrt{x+1}+\sqrt{3-x}\)

\(\Leftrightarrow t^2=4+2\sqrt{\left(x+1\right)\left(3-x\right)}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(3-x\right)}=\dfrac{t^2-4}{2}\)

pt \(\Leftrightarrow\dfrac{2}{t}=1+\dfrac{t^2-4}{2}\)

\(\Leftrightarrow4=2t+t^3-4t\)

\(\Leftrightarrow t^3-2t-4=0\)

\(\Leftrightarrow t=2\)

\(\Leftrightarrow\text{​​}\sqrt{\left(x+1\right)\left(3-x\right)}=\dfrac{t^2-4}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

20 tháng 11 2018

Cái này dùng lượng liên hợp nhưng không biết thêm bớt sao cho vừa