K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

Ai giúp mình cho nick VIP của mình mới dùng 1 tuần

17 tháng 11 2018

Cho mình nick vip đi !

Nguyễn Thanh Hằng9 tháng 12 2017 lúc 20:55

A=1+3+32+.....+32018

3A=3+32+...........+32018+32019

3AA=(3+32+.........+32019)(1+3+......+32018)

2A=220191

Mà B=22019

2A;B là 2 số tự nhiên liên tiếp

16 tháng 11 2018
Giúp mk vs
13 tháng 10 2024

wow

15 tháng 1 2015

Ta có : (3a-2b)/5 = (2c-5a)/3 <=> (15a-10b)/25 = (6c -15a)/9 = (15a-10b+6c-15a)/(25+9) = (3c-5b)/17 Do đó: (3c-5b)/17 = (5b-3c_

)/2 = 0. Nên 3a - 2b = 0 => b = 1,5a; 2c - 5a = 0 => c = 2,5a. Lúc đó : a+b+c= 5a = -50 => a = -10; b = -15, c= -25.

31 tháng 5 2021

43x42=???

31 tháng 12 2017

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

=>\(\frac{5\left(3a-2b\right)}{25}=\frac{3\left(2c-5a\right)}{9}=\frac{2\left(5b-3c\right)}{4}\)

=> \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)

=> \(\frac{3a-2b}{5}=0\Rightarrow3a-2b=0\Rightarrow3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\left(1\right)\)

\(\frac{2c-5a}{3}=0\Rightarrow2c-5a=0\Rightarrow2c=5a\Rightarrow\frac{a}{2}=\frac{c}{5}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Theo tính chất của dãy tỉ số bằng nhau ta lại có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

=> a=-10,b=-15,c=-25

31 tháng 12 2017

Theo tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{5b-3c}{2}=\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5\left(3a-2b\right)+3\left(2c-5a\right)}{5.5+3.3}\)

=\(\frac{-10b+6c}{34}=\frac{-5b+3c}{17}\)

Do đó, \(\frac{5b-3c}{2}=\frac{-5b+3c}{17}\)

Suy ra 5b-3c=0\(\Rightarrow b=\frac{3}{5}c\)và a=\(\frac{2}{5}c\)

Lại có a+b+c=-50 nên \(\frac{2}{5}\)\(c+\frac{3}{5}c+c=-50\Rightarrow c=-25\)

Vậy b=\(\frac{3}{5}c\Rightarrow b=\frac{3}{5}.-25\Rightarrow b=-15\)

a=\(\frac{2}{5}c\Rightarrow a=\frac{2}{5}.-25\Rightarrow\)a=-10

Vậy a=-10

b=-15

c=-25

30 tháng 1 2022

\(a^2+a^2(a+1)^2+(a+1)^2 \\=a^4+2a^3+3a^2+2a+1 \\=(a^2+a+1)^2 \) 

Thay a = 2018 ta được A chính phương.

NV
6 tháng 4 2022

Bài toán này dựa trên bài toán mà bạn đã đăng hôm trước: nếu \(m^2+n^2\) chia hết cho 7 thì cả m và n đều chia hết cho 7.

Đặt \(\left\{{}\begin{matrix}5a+2b=m^2\\2a+5b=n^2\end{matrix}\right.\) 

\(\Rightarrow7\left(a+b\right)=m^2+n^2\)

\(\Rightarrow m^2+n^2⋮7\)

\(\Rightarrow m;n\) đều chia hết cho 7

\(\Rightarrow m^2;n^2\) đều chia hết cho 49

\(\Rightarrow\left\{{}\begin{matrix}5a+2b⋮49\\2a+5b⋮49\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3\left(a-b\right)⋮49\\7\left(a+b\right)⋮49\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b⋮7\\a+b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a⋮7\\2b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\) (đpcm)

6 tháng 4 2022

Cám ơn thầy ạ !
 Đây là 1 loạt những bài toán về chuyên đề đồng dư thức , thầy đã nhiệt tình giúp đỡ em, em cám ơn ạ

 

1 tháng 1 2021

\(x=0\) không là nghiệm của phương trình

Chia hai vế phương trình cho x, phương trình trở thành:

\(\left(x+\dfrac{4}{x}\right)+2-m=4\sqrt{x+\dfrac{4}{x}}\left(1\right)\)

Đặt \(x+\dfrac{4}{x}=t\left(t\ge2\right)\)

\(\left(1\right)\Leftrightarrow m=f\left(t\right)=t^2-4t+2\left(2\right)\)

Phương trình đã cho có nghiệm khi phương trình \(\left(2\right)\) có nghiệm \(t\ge2\)

\(\Leftrightarrow m\ge f\left(2\right)=-2\)

\(\Rightarrow\) có 2021 giá trị thỏa mãn yêu cầu bài toán