tìm a,b biết 9a^2b^2 - 5a - 5b là số chính phương
và a^2019 = 2020b^2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (3a-2b)/5 = (2c-5a)/3 <=> (15a-10b)/25 = (6c -15a)/9 = (15a-10b+6c-15a)/(25+9) = (3c-5b)/17 Do đó: (3c-5b)/17 = (5b-3c_
)/2 = 0. Nên 3a - 2b = 0 => b = 1,5a; 2c - 5a = 0 => c = 2,5a. Lúc đó : a+b+c= 5a = -50 => a = -10; b = -15, c= -25.
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
=>\(\frac{5\left(3a-2b\right)}{25}=\frac{3\left(2c-5a\right)}{9}=\frac{2\left(5b-3c\right)}{4}\)
=> \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)
=> \(\frac{3a-2b}{5}=0\Rightarrow3a-2b=0\Rightarrow3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\left(1\right)\)
\(\frac{2c-5a}{3}=0\Rightarrow2c-5a=0\Rightarrow2c=5a\Rightarrow\frac{a}{2}=\frac{c}{5}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Theo tính chất của dãy tỉ số bằng nhau ta lại có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> a=-10,b=-15,c=-25
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5b-3c}{2}=\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5\left(3a-2b\right)+3\left(2c-5a\right)}{5.5+3.3}\)
=\(\frac{-10b+6c}{34}=\frac{-5b+3c}{17}\)
Do đó, \(\frac{5b-3c}{2}=\frac{-5b+3c}{17}\)
Suy ra 5b-3c=0\(\Rightarrow b=\frac{3}{5}c\)và a=\(\frac{2}{5}c\)
Lại có a+b+c=-50 nên \(\frac{2}{5}\)\(c+\frac{3}{5}c+c=-50\Rightarrow c=-25\)
Vậy b=\(\frac{3}{5}c\Rightarrow b=\frac{3}{5}.-25\Rightarrow b=-15\)
a=\(\frac{2}{5}c\Rightarrow a=\frac{2}{5}.-25\Rightarrow\)a=-10
Vậy a=-10
b=-15
c=-25
Bài toán này dựa trên bài toán mà bạn đã đăng hôm trước: nếu \(m^2+n^2\) chia hết cho 7 thì cả m và n đều chia hết cho 7.
Đặt \(\left\{{}\begin{matrix}5a+2b=m^2\\2a+5b=n^2\end{matrix}\right.\)
\(\Rightarrow7\left(a+b\right)=m^2+n^2\)
\(\Rightarrow m^2+n^2⋮7\)
\(\Rightarrow m;n\) đều chia hết cho 7
\(\Rightarrow m^2;n^2\) đều chia hết cho 49
\(\Rightarrow\left\{{}\begin{matrix}5a+2b⋮49\\2a+5b⋮49\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3\left(a-b\right)⋮49\\7\left(a+b\right)⋮49\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b⋮7\\a+b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a⋮7\\2b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\) (đpcm)
Cám ơn thầy ạ !
Đây là 1 loạt những bài toán về chuyên đề đồng dư thức , thầy đã nhiệt tình giúp đỡ em, em cám ơn ạ
\(x=0\) không là nghiệm của phương trình
Chia hai vế phương trình cho x, phương trình trở thành:
\(\left(x+\dfrac{4}{x}\right)+2-m=4\sqrt{x+\dfrac{4}{x}}\left(1\right)\)
Đặt \(x+\dfrac{4}{x}=t\left(t\ge2\right)\)
\(\left(1\right)\Leftrightarrow m=f\left(t\right)=t^2-4t+2\left(2\right)\)
Phương trình đã cho có nghiệm khi phương trình \(\left(2\right)\) có nghiệm \(t\ge2\)
\(\Leftrightarrow m\ge f\left(2\right)=-2\)
\(\Rightarrow\) có 2021 giá trị thỏa mãn yêu cầu bài toán
Ai giúp mình cho nick VIP của mình mới dùng 1 tuần
Cho mình nick vip đi !
Nguyễn Thanh Hằng9 tháng 12 2017 lúc 20:55
A=1+3+32+.....+32018
⇔3A=3+32+...........+32018+32019
⇔3A−A=(3+32+.........+32019)−(1+3+......+32018)
⇔2A=22019−1
Mà B=22019
⇔2A;B là 2 số tự nhiên liên tiếp