K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

Dễ mà:

f(x)=(2x4-2x3)-(3x3-3x2)-(8x2-8x)-(3x-3)

      =2x3(x-1)-3x2(x-1)-8x(x-1)-3(x-1)

      =(x-1)(2x3-3x2-8x-3)

      =(x-1)[(2x3+2x2)-(5x2+5x)-(3x+3)]

      =(x-1)[2x2(x+1)-5x(x+1)-3(x+1)]

      =(x-1)(x+1)(2x2-5x-3)   

      =(x-1)(x+1)[2x(x-3)+(x-3)]

      =(x-1)(x+1)(x-3)(2x+1)

13 tháng 11 2018

\(f\left(x\right)=2x^4-5x^3-5x^2+5x+3.\)

\(=\left(2x^4-2x^3\right)-\left(3x^3-3x^2\right)-\left(8x^2-8x\right)-\left(3x-3\right)\text{ }\left(\text{Hơi khó hiểu thông cảm! }\right)\)

\(=2x^3\left(x-1\right)-3x^2\left(x-1\right)-8x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-1\right)\left(2x^3-3x^2-8x-3\right)\)

\(=\left(x-1\right)\left[\left(2x^3+2x^2\right)-\left(5x^2+5x\right)-\left(3x+3\right)\right]\)

\(=\left(x-1\right)\left[2x^2\left(x+1\right)-5x\left(x+1\right)-3\left(x+1\right)\right]\)

\(=\left(x-1\right)\left(x+1\right)\left(2x^2-5x-3\right)\)

\(=\left(x-1\right)\left(x+1\right)\left[\left(2x^2-6x\right)+\left(x-3\right)\right]\)

\(=\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(2x+1\right)\)

15 tháng 10 2021

Bài 2: 

a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)

b: \(5x^2+5xy-x-y\)

\(=5x\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(5x-1\right)\)

c:\(-6x^2+7x-2\)

\(=-6x^2+3x+4x-2\)

\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)

\(=\left(2x-1\right)\left(-3x+2\right)\)

15 tháng 10 2021

1.

a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)

b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

2.

a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)

c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)

3.

b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)

4.

a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

13 tháng 1

Bài 1:

\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)

\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)

\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)

13 tháng 1

Bài 2:

\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)

Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:

\(\left(y-1\right)\left(y+1\right)=120\)

\(\Leftrightarrow y^2-1=120\)

\(\Leftrightarrow y^2=121\)

\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)

+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow x^2-x+6x-6=0\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)

+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)

\(\Leftrightarrow x^2+5x+16=0\)

\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)

\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

\(\Rightarrow\) loại

Vậy \(x\in\left\{1;-6\right\}\).

\(b,\) Đề thiếu vế phải rồi bạn.

31 tháng 10 2019

Thu gọn Q(x) = x4 + 7x2 + 1

Khi đó R(x) = Q(x) - P(x) = 4x2 + 3x + 2. Chọn A

1 tháng 11 2021

1.

a) \(2x^4-4x^3+2x^2\)

\(=2x^2\left(x^2-2x+1\right)\)

\(=2x^2\left(x-1\right)^2\)

b) \(2x^2-2xy+5x-5y\)

\(=\left(2x^2-2xy\right)+\left(5x-5y\right)\)

\(=2x\left(x-y\right)+5\left(x-y\right)\)

\(=\left(x-y\right)\cdot\left(2x+5\right)\)

1 tháng 11 2021

2 . 

a,

\(4x\left(x-3\right)-x+3=0\)

\(4x\left(x-3\right)-\left(x-3\right)=0\)

\(\left(x-3\right)\left(4x-1\right)=0\)

\(\left[{}\begin{matrix}x-3=0\\4x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\4x=1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)

vậy \(x\in\left\{3;\dfrac{1}{4}\right\}\)

b, 

\(\)\(\left(2x-3\right)^2-\left(x+1\right)^2=0\)

\(\left(2x-3-x-1\right)\left(2x-3+x+1\right)\) = 0

\(\left(x-4\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}x-4=0\\3x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=4\\3x=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=4\\x=\dfrac{2}{3}\end{matrix}\right.\)

vậy \(x\in\left\{4;\dfrac{2}{3}\right\}\)

Câu 1: A

Câu 21: A

 

1 tháng 11 2021

\(16,A\\ 17,C\\ 18,A\\ 19,C\\ 20,A\\ 21,A\)

25 tháng 12 2021

14.C

15.D

25 tháng 12 2021

Câu 14: C

Câu 15: D

27 tháng 10 2021

\(a,=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\\ b,=\left(x+y\right)\left(x-5\right)\\ c,=5x^2\left(x-y\right)-10x\left(x-y\right)=5x\left(x-2y\right)\left(x-y\right)\\ d,=x^2-2xy=x\left(x-2y\right)\\ e,=\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)