\(\left(\sqrt{0.36}\cdot5-\sqrt{\left(0.5\right)^2}\div\frac{1}{6}\right)\cdot\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
\(=\sqrt{\frac{3+2\sqrt{3}\sqrt{2}+2}{3-2\sqrt{3}\sqrt{2}+2}}+\sqrt{\frac{3-2\sqrt{3}\sqrt{2}+2}{3+2\sqrt{3}\sqrt{2}+2}}\)
\(=\sqrt{\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)^2}}+\sqrt{\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}+\sqrt{3}\right)^2}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)}\)\
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{5+2\sqrt{6}+5-2\sqrt{6}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=10\)
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-3\)
\(=\sqrt{3}-1\)
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
d) \(\left(-45,7\right)+\left[\left(+5,7\right)+\left(+5,75\right)+\left(-0,75\right)\right]\)
\(=\left(-45,7\right)+\left[5,7+5,75-0,75\right]\)
\(=\left(-45,7\right)+5,7+5,75-0,75\)
\(=\left[\left(-45,7+5,7\right)\right]+\left[5,75-0,75\right]\)
\(=-40+5=-35\)
e) \(11,26-5,13:\left(5\frac{5}{18}-1\frac{8}{9}\cdot1,25+1\frac{16}{63}\right)\)
\(=11,26-5,13:\left(\frac{95}{18}-\frac{17}{9}\cdot\frac{5}{4}+\frac{79}{63}\right)\)
\(=11,26-5,13:\left(\frac{95}{18}-\frac{85}{36}+\frac{79}{63}\right)\)
\(=\frac{563}{50}-\frac{513}{100}:\frac{1051}{252}\)
\(=\frac{563}{50}-\frac{513}{100}\cdot\frac{252}{1051}\)
\(=\frac{563}{50}-\frac{129276}{105100}=\frac{21083}{2102}\)
Số lớn quá!
j) \(\sqrt{8^2+6^2}\cdot\sqrt{16}+\frac{1}{2}\cdot\sqrt{\frac{4}{5}}\)
\(=\sqrt{64+36}\cdot\sqrt{16}+\frac{1}{2}\cdot\sqrt{\frac{4}{5}}\)
\(=\sqrt{100}\cdot4+\frac{1}{2}\cdot\frac{2\sqrt{5}}{5}\)
\(=10\cdot4+\frac{\sqrt{5}}{5}=40+\frac{\sqrt{5}}{5}=\frac{200+\sqrt{5}}{5}\)
h) Cái đây mình có làm rồi
\(\frac{3}{4}+\frac{1}{4}:\left(-\frac{2}{3}\right)-\left(-5\right)\)
\(=\frac{3}{4}+\frac{1}{4}.\left(-\frac{3}{2}\right)+5\)
\(=\frac{3}{4}-\frac{3}{8}+5\)
\(=\frac{3}{8}+5=\frac{43}{8}\)
\(12.\left(\frac{2}{5}-\frac{5}{6}\right)^2=12.\left(-\frac{13}{30}\right)^2=12.\frac{169}{900}=\frac{169}{75}\)
\(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}=4+6-3+5=12\)
\(\left(9\frac{3}{4}:3.4.2\frac{7}{34}\right):\left(-1\frac{9}{16}\right)=\left(\frac{39}{4}:3.4.\frac{75}{34}\right):\left(-\frac{25}{16}\right)=\frac{975}{34}.\left(-\frac{16}{25}\right)=-\frac{312}{17}\)
\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}=\frac{3+39}{91-7}=\frac{42}{84}=\frac{1}{2}\)
đụ cha mi
mi trù ta thi rớt HK II mà ta giúp mày hả
mấy bài này cũng dễ ẹt nữa
đừng có mơ ta sẽ giúp mày
ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99\cdot101}\right)\)
\(B=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)
\(B=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)
\(B=\frac{\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot\cdot\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot101\right)}\)
\(B=\frac{100\cdot2}{1\cdot101}\)
\(B=\frac{200}{101}\)
\(\left(\sqrt{0,36}.5-\sqrt{\left(0,5\right)^2}\div\frac{1}{6}\right).\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
= \(\left(0,6.5-0,5.6\right).\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
= \(\left(3-3\right).\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
= \(0.\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
= 0