: Cho DABC cân tại A , E là trung điểm của AB, F là trung điểm của AC.
a) Chứng minh EF là đường trung bình của DABC.
b) Tính độ dài đoạn thẳng EF biết BC = 10 cm.
c) Chứng minh tứ giác BCFE là hình thang cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì EF là đường trung bình tg ABC nên EF//BC
Do đó BEFC là hình thang
Mà \(\widehat{ABC}=\widehat{ACB}\) (tg ABC cân tại A)
Vậy BEFC là hình thang cân
b, Ta có EF là đtb tg ABC nên \(EF=\dfrac{1}{2}BC\)
Mà \(EF=\dfrac{1}{2}MF\) (E là trung điểm MF) nên \(BC=MF\)
Mà EF//BC nên MF//BC
Do đó BMFC là hbh
a: Xét ΔBAC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình của ΔBAC
Suy ra: EF//BC và \(FE=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
Tham khảo
nối đường chéo AC
Trong ∆ABC ta có
E là trung điểm của AB
F là trung điểm của BC
Nên EF là đường trung bình của ∆ABC
EF//=1/2AC(1)
(Sd tính chất của đng trung bình)
Chứng minh tương tự với ∆ADC
=> HG//=1/2AC(2)
Từ (1) và(2) suy ra EF//=HG
Vậy tứ giác EFGHlaf hình bình hành
Vì có một cặp đối song song và bằng nhau
a: Xét ΔABC có
\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
Do đó: DE//BC
Xét tứ giác BCED có DE//BC
nên BCDE là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BCDE là hình thang cân
a: Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình của ΔABC
b: \(BC=2\cdot EF=2\cdot5=10\left(cm\right)\)
a) Xét tam giác ABC có:
M là trung điểm BC
ME//AC
=> E là trung điểm AB
Xét tam giác ABC có:
M là trung điểm BC
MF//AB
=> F là trung điểm AC
Xét tam giác ABC có:
E là trung điểm AB(cmt)
F là trung điểm AC(cmt)
=> EF là đường trung bình
c) Ta có: EF là đường trung bình
\(\Rightarrow BC=2EF=2.5=10\left(cm\right)\)
a/ M, N là trung điểm của AB, AC ⇒ MN là đường trung bình của △ABC, MN // BC (1)
Vậy: MNCB là hình thang (đpcm)
==========
b/ Do MN là đường trung bình của △ABC
Vậy: \(MN=\dfrac{BC}{2}\Rightarrow BC=MN.2=3,5.2=7cm\)
==========
c/ Do E là trung điểm của BC \(\Rightarrow CE=\dfrac{BC}{2}\)
- Mà \(MN=\dfrac{BC}{2}\Rightarrow MN=CE\left(2\right)\)
Từ (1) và (2). Vậy: MNCE là hình bình hành (đpcm)
cho tam giác nha, ghi lộn