K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 11 2018

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1^1}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(\Rightarrow A< \dfrac{1}{1^1}+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{\left(n-1\right)}-\dfrac{1}{n}=2-\dfrac{1}{n}\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 2 2018

Lời giải:

Tổng trên gồm \([2n-(n+1)]:1+1=n\)\([2n-(n+1)]:1+1=n\)
số hạng

Mỗi số hạng đứng trước \(\frac{1}{2n}\) đều lớn hơn hoặc bằng nó do \(n+1, n+2,....,2n-1\leq 2n\forall n\in\mathbb{N}^*\) thì \(\frac{1}{n+1}, \frac{1}{n+2},..., \frac{1}{2n-1}\geq \frac{1}{2n}\)

Suy ra:

\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\geq \underbrace{\frac{1}{2n}+\frac{1}{2n}+...+\frac{1}{2n}}_{ \text{n lần}}=\frac{n}{2n}=\frac{1}{2}\) (đpcm)

Dấu bằng xảy ra khi \(n=1\)

NV
30 tháng 6 2021

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Do đó:

\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Điều kiện: $a,b,c>0$

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a+b}{ab+c^2}=\frac{(a+b)^2}{(ab+c^2)(a+b)}=\frac{(a+b)^2}{a(b^2+c^2)+b(a^2+c^2)}\leq \frac{b^2}{a(b^2+c^2)}+\frac{a^2}{b(a^2+c^2)}\)

\(\frac{b+c}{bc+a^2}=\frac{(b+c)^2}{(b+c)(bc+a^2)}=\frac{(b+c)^2}{c(b^2+a^2)+b(a^2+c^2)}\leq \frac{b^2}{c(a^2+b^2)}+\frac{c^2}{b(a^2+c^2)}\)

\(\frac{c+a}{ca+b^2}=\frac{(c+a)^2}{(c+a)(ac+b^2)}=\frac{(c+a)^2}{c(a^2+b^2)+a(b^2+c^2)}\leq \frac{c^2}{a(b^2+c^2)}+\frac{a^2}{c(a^2+b^2)}\)

Cộng theo vế các BĐT trên:

\(\Rightarrow \text{VT}\leq \frac{b^2+c^2}{a(b^2+c^2)}+\frac{a^2+c^2}{b(a^2+c^2)}+\frac{b^2+a^2}{c(b^2+a^2)}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

10 tháng 2 2021

Xét hiệu VT - VP

\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)

Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0

\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)

=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)

mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm

 

10 tháng 2 2021

$a,b,c$ ở đây chỉ có vai trò là hoán vị thôi nên không được giả sử $a\ge b\ge c$ đâu ạ. Nên cách này chưa trọn vẹn.

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Lời giải:

Phản chứng. Giả sử tồn tại 3 số dương $a,b,c$ thỏa mãn điều trên

$\Rightarrow a+\frac{1}{b}+b+\frac{1}{c}+c+\frac{1}{a}< 6$

$\Leftrightarrow (a+\frac{1}{a}-2)+(b+\frac{1}{b}-2)+(c+\frac{1}{c}-2)< 0$

$\Leftrightarrow \frac{(a-1)^2}{a}+\frac{(b-1)^2}{b}+\frac{(c-1)^2}{c}< 0$ (vô lý với mọi $a,b,c>0$)

Do đó điều giả sử là sai.

Tức là không có 3 số dương $a,b,c$ nào thỏa mãn BĐT đã cho.