Tìm giá trị nhỏ nhất
a. A=\(4x^2+y^2-4x-2y+3\)
b. B= \(x^2+2y^2+2xy-2y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4x^2+y^2+xy+4x+2y+3=4x^2+x\left(y+4\right)+\frac{\left(y+4\right)^2}{16}+y^2-\frac{\left(y+4\right)^2}{16}+2y+3\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{16y^2-y^2-8y-16+32y+48}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15y^2+24y+32}{16}\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y^2+\frac{24}{15}y+\frac{16}{25}\right)+\frac{112}{5}}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y+\frac{4}{5}\right)^2+\frac{112}{5}}{16}\ge\frac{\frac{112}{5}}{16}=\frac{7}{5}\)Đẳng thức xảy ra khi \(\hept{\begin{cases}2x+\frac{y+4}{4}=0\\y+\frac{4}{5}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)
\(B=-x^2-y^2-2xy=-\left(x+y\right)^2\le0\)
Đẳng thức xảy ra khi x = -y
Câu 1 :
\(E=4x^2+y^2-4x-2y+3\)
\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)
\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
Câu 2 :
\(G=x^2+2y^2+2xy-2y\)
\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)
\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
a: A=(x-1)(x-3)(x2-4x+5)
\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x\right)^2+8\left(x^2-4x\right)+15\)
\(=\left(x^2-4x+4\right)^2-1\)
\(=\left(x-2\right)^4-1>=-1\)
Dấu = xảy ra khi x-2=0
=>x=2
b: \(B=x^2-2xy+2y^2-2y+1\)
\(=x^2-2xy+y^2+y^2-2y+1\)
\(=\left(x-y\right)^2+\left(y-1\right)^2>=0\)
Dấu = xảy ra khi x-y=0 và y-1=0
=>x=y=1
c: \(C=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+5\)
\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+5\)
\(=-\left[\left(x^2+5x\right)^2-36\right]+5\)
\(=-\left(x^2+5x\right)^2+36+5\)
\(=-\left(x^2+5x\right)^2+41< =41\)
Dấu = xảy ra khi \(x^2+5x=0\)
=>x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
ta có D=x^2 +2.y^2 -2xy+4x-5y-12
<=>D=(x^2 +y^2 +4 -2xy-4y+4x) +[y^2 -2.y.(1/2) +1/4] -1/4+8
<=>D=(x-y+2)^2 +(y-1/2)^2 +31/4
mà (x-y+2)^2 >= 0 và (y-1/2)^2>=0 nên (x-y+2)^2 +(y-1/2)^2 +31/4 >= 31/4
dấu '=' xảy ra khi :y-1/2=0 và x-y+2=0 <=> y=1/2 và x=-3/2
vậy GTNN của D là 31/4 khi x=-3/2, y=1/2
Ta có : \(A=x^2+4x+2y^2+2xy+2018\)
\(\RightarrowđểAmin\)thì \(x^2+4x+2y^2+2xy=0\)
\(\Rightarrow Amin=0+2018=2018\)
\(\Rightarrow Amin=2018\)
Do A nhỏ nhất
Suy ra : x^2 = 0, 2y^2 = 0 , 4y = 0 .......( tất cả số hạng bằng 0)
Suy ra A= 2019
\(A=x^2+2y^2+4y+2xy-4x+2019\)
\(A=\left(x^2+y^2-2^2+2xy-4y-4x\right)+\left(y^2+8y+4^2\right)+2007\)
\(A=\left(x+y-2\right)^2+\left(y+4\right)^2+2007\ge2007\)
Vậy \(Min_A=2007\) khi \(\hept{\begin{cases}x+y-2=0\\y+4=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-4\end{cases}}\hept{\begin{cases}x=6\\y=4\end{cases}}\)
a) A = x2 + 4x - 2 = x2 + 4x + 4 - 6 = (x + 2)2 - 6
(x + 2)2 ≥ 0 => A ≥ -6 => GTNN của A là -6, xảy ra khi x = 2
`a)A=x^2+4x-2`
`A=x^2+4x+4-6=(x+2)^2-6`
Vì `(x+2)^2 >= 0 AA x`
`<=>(x+2)^2-6 >= -6 AA x`
Hay `A >= -6 AA x`
Dấu "`=`" xảy ra`<=>(x+2)^2=0<=>x=-2`
Vậy `GTN N` của `A` là `-6` khi `x=-2`
________________________________________________
`b)B=2x^2-4x+3`
`B=2(x^2-2x+3/2)`
`B=2(x^2-2x+1)+1=2(x-1)^2+1`
Vì `2(x-1)^2 >= 0 AA x`
`<=>2(x-1)^2+1 >= 1 AA x`
Hay `B >= 1 AA x`
Dấu "`=`" xảy ra `<=>(x-1)^2=0<=>x=1`
Vậy `GTN N` của `B` là `1` khi `x=1`
__________________________________________________
`c)C=x^2+y^2-4x+2y+5`
`C=x^2-4x+4+y^2+2y+1`
`C=(x-2)^2+(y+1)^2`
Vì `(x-2)^2 >= 0 AA x` và `(y+1)^2 >= 0 AA y`
`=>(x-2)^2+(y+1)^2 >= 0 AA x,y`
Hay `C >= 0 AA x,y`
Dấu "`=`" xảy ra`<=>{((x-2)^2=0),((y+1)^2=0):}`
`<=>{(x=2),(y=-1):}`
Vậy `GTN N` của `C` là `0` khi `x=2`,y=-1
a/ \(A=4x^2+y^2-4x-2y+3\)
\(=\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(2x-1\right)^2+\left(y-1\right)^2+1\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(2x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
\(\Leftrightarrow A\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)
Vậy...
b/ \(B=x^2+2y^2+2xy-2y\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)-1\)
\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge0\)
\(\Leftrightarrow B\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy..
a.\(A=4x^2+y^2-4x-2y+3\)
\(A=\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)
\(A=\left(2x-1\right)^2+\left(y-1\right)^2+1\)
Vì \(\left(2x-1\right)^2\ge0\) và \(\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
\(\Rightarrow Min_A=1\) khi \(\left\{{}\begin{matrix}2x-1=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)
b.\(B=x^2+2y^2+2xy-2y\)
\(B=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)-1\)
\(B=\left(x+y\right)^2+\left(y-1\right)^2-1\)
Vì \(\left(x+y\right)^2\ge0\) và \(\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\)
\(\Rightarrow Min_B=-1\) khi \(\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-y\\y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy \(Min_B=-1\) khi \(x=-1;y=1\)