5(x-2)-3x=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8
=>x^2-x-12-x^2+4x+5=8
=>3x-7=8
=>3x=15
=>x=5
b: =>3x^2+3x-2x-2-3x^2-21x=13
=>-20x=15
=>x=-3/4
c: =>x^2-25-x^2-2x=9
=>-2x=25+9=34
=>x=-17
d: =>x^3-1-x^3+3x=1
=>3x-1=1
=>3x=2
=>x=2/3
a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2
= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25
= 36
b) (3x^2 - y)^2
= 9x^4 - 6x^2y + y^2
c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)
= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4
= 9x^2 + 54
d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2
= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x
= x^3 - 16x^2 + 25x
e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)
= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2
= x^3 + 2x^2 - 2x - 12
f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2
= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4
= x^6 + 2x^4 + 2x^2 + 124
1/ \(2\left(x-5\right)=\left(-x-5\right)\)
\(\Leftrightarrow2x-10=-x-5\)
\(\Leftrightarrow3x=5\)
\(\Leftrightarrow x=\dfrac{5}{3}\)
Vậy: \(S=\left\{\dfrac{5}{3}\right\}\)
==========
2/ \(2\left(x+3\right)-3\left(x-1\right)=2\)
\(\Leftrightarrow2x+6-3x+3=2\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\)
Vậy: \(S=\left\{7\right\}\)
==========
3/ \(4\left(x-5\right)-\left(3x-1\right)=x-19\)
\(\Leftrightarrow4x-20-3x+1=x-19\)
\(\Leftrightarrow0x=0\)
Vậy: \(S=\left\{x|x\text{ ∈ }R\right\}\)
===========
4/ \(7-\left(x-2\right)=5\left(2-3x\right)\)
\(\Leftrightarrow7-x+2=10-15x\)
\(\Leftrightarrow14x=1\)
\(\Leftrightarrow x=\dfrac{1}{14}\)
Vậy: \(S=\left\{\dfrac{1}{14}\right\}\)
==========
5/ \(2x-\left(5-3x\right)=7x+1\)
\(\Leftrightarrow2x-5+3x=7x+1\)
\(\Leftrightarrow-2x=6\)
\(\Leftrightarrow x=-3\)
Vậy: \(S=\left\{-3\right\}\)
[---]
Chúc bạn học tốt.
1. \(2\left(x-5\right)=-x-5\)
\(\Leftrightarrow3x=5\)
\(\Leftrightarrow x=\dfrac{5}{3}\)
Vậy \(S=\left\{\dfrac{5}{3}\right\}\)
2. \(2\left(x+3\right)-3\left(x-1\right)=2\)
\(\Leftrightarrow2x+6-3x+3=2\)
\(\Leftrightarrow x=7\)
Vậy \(S=\left\{7\right\}\)
3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)
\(\Leftrightarrow4x-20-3x+1-x+19=0\)
\(\Leftrightarrow0x=0\)
Vậy \(S=\left\{x\in R\right\}\)
4. \(7-\left(x-2\right)=5\left(2-3x\right)\)
\(\Leftrightarrow7-x+2-10+15x=0\)
\(\Leftrightarrow14x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{14}\)
Vậy \(S=\left\{\dfrac{1}{14}\right\}\)
4. \(2x-\left(5-3x\right)=7x+1\)
\(\Leftrightarrow2x-5+3x-7x-1=0\)
\(\Leftrightarrow-2x-6=0\)
\(\Leftrightarrow x=-3\)
Vậy \(S=\left\{-3\right\}\)
\(A=x^2+6x+9-4x-1-2x-x^2=9\\ B=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ C=\left(3x+5-3x+5\right)^2=100\)
a: \(A=x^2+6x+9-4x-1-2x-x^2=8\)
b: \(B=2x^2+3x-10x-15-2x^2+6x+x+7=-8\)
a) \(3\left(x^2-2x+1\right)+x\left(2-3x\right)=7\)
\(\Rightarrow3x^2-6x+3+2x-3x^2=7\)
\(\Rightarrow-4x+3=7\)
\(\Rightarrow-4x+3-7=0\)
\(\Rightarrow-4x-4=0\)
\(\Rightarrow-4\left(x+1\right)=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
b) \(5\left(x-2\right)+2\left(x+3\right)=10\)
\(\Rightarrow5x-10+2x+6=10\)
\(\Rightarrow7x-4=10\)
\(\Rightarrow7x=10+4=14\)
\(\Rightarrow x=\dfrac{14}{7}=2\)
c) \(\left(x+1\right)\left(-3\right)+5\left(x-4\right)=-3\)
\(\Rightarrow-3x-3+5x-20=-3\)
\(\Rightarrow2x-23=-3\)
\(\Rightarrow2x=-3+23=20\)
\(\Rightarrow x=\dfrac{20}{2}=10\)
d) \(2\left(x-1\right)-x\left(3-x\right)=x^2\)
\(\Rightarrow2x-2-3x+x^2=x^2\)
\(\Rightarrow-x-2+x^2-x^2=0\)
\(\Rightarrow-x-2=0\)
\(\Rightarrow-x=2\)
\(\Rightarrow x=-2\)
đ) \(3x\left(x+5\right)-2\left(x+5\right)=3x^2\)
\(\Rightarrow3x^2+15x-2x-10=3x^2\)
\(\Rightarrow3x^2-3x^2+13x-10=0\)
\(\Rightarrow13x-10=0\)
\(\Rightarrow13x=10\)
\(\Rightarrow x=\dfrac{10}{13}\)
e) \(4x\left(x+2\right)+x\left(4-x\right)=3x^2+12\)
\(\Rightarrow4x^2+8x+4x-x^2=3x^2+12\)
\(\Rightarrow3x^2+12x=3x^2+12\)
\(\Rightarrow3x^2+12x-3x^2-12=0\)
\(\Rightarrow12\left(x-1\right)=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
f) \(\dfrac{1}{3}x\left(3x+6\right)-x\left(x-5\right)=9\)
\(\Rightarrow x^2+2x-x^2+5x=9\)
\(\Rightarrow7x=9\)
\(\Rightarrow x=\dfrac{9}{7}\)
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
a) \(7x^2=28\Leftrightarrow x^2=7\Leftrightarrow x=\sqrt{7}\)
c) \(\left(x-1\right)\left(x+\dfrac{5}{2}\right)=0\Leftrightarrow x\in\left\{1;\dfrac{-5}{2}\right\}\)
1 ) \(lim_{x\rightarrow+\infty}\dfrac{3x^2+5}{x^3-x+2}=lim_{x\rightarrow+\infty}\dfrac{\dfrac{3}{x}+\dfrac{5}{x^3}}{1-\dfrac{1}{x^2}+\dfrac{2}{x^3}}=0\)
2 ) \(lim_{x\rightarrow-\infty}\dfrac{2x^2\left(3x^2-5\right)^3\left(1-x\right)^5}{3x^{14}+x^2-1}\) \(=lim_{x\rightarrow-\infty}\dfrac{\dfrac{2}{x}\left(3-\dfrac{5}{x^2}\right)^3\left(\dfrac{1}{x}-1\right)^5}{3+\dfrac{1}{x^{12}}-\dfrac{1}{x^{14}}}=0\)
3 ) \(lim_{x\rightarrow+\infty}\dfrac{3x-\sqrt{2x^2+5}}{x^2-4}=lim_{x\rightarrow+\infty}\dfrac{\left(7x^2-5\right)}{\left(3x+\sqrt{2x^2+5}\right)\left(x^2-4\right)}\)
\(=lim_{x\rightarrow+\infty}\dfrac{\dfrac{7}{x}-\dfrac{5}{x^3}}{\left(3+\sqrt{2+\dfrac{5}{x^2}}\right)\left(1-\dfrac{4}{x^2}\right)}=0\)
5(x-2)-3x=5
=>5x-10-3x=5
=>2x=15=>x=15/2
x = -1/5