Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, Q lần lượt là trung điểm của các cạnh AB, BC, CA.
a) Chứng minh AMNQ là hình chữ nhật.
b) Lấy điểm K đối xứng với điểm N qua Q. Điểm I đối với điểm N qua M.
Chứng minh: Ba điểm I, K, A thẳng hàng.
c) Chứng minh: Hai điểm I và K đối xứng nhau qua điểm A.
d) Kẻ đường cao AH (H thuộc BC) chứng minh tứ giác MHNQ là hình thang cân.
e) Khi AB cố định điểm C di động trên tia Ax vuông góc với AB, thì tâm của hình chữ nhật AMNQ chạy trên đường nào?
giúp mình nhé!
a: Xét ΔCAB có CQ/CA=CN/CB
nên QN//AB và QN=1/2BA
=>QN=AM và QN=AM
=>AMNQ là hình bình hành
mà góc QAM=90 độ
nên AMNQ là hình chữ nhật
b: Xét tứ giác ANBI có
M là trung điểm chung của AB và NI
NA=NB
Do đó: ANBI là hình thoi
=>AB là phân giác của góc NAI(1) và NA=NI
Xét tứ giác ANCK có
Q là trung điểm chung của AC và NK
NA=NC
DO đo: ANCK là hình thoi
=>AC là phân giác của góc NAK(2) và AK=AN
Từ (1) và (2) suy ra góc KAI=2*90=180 độ
=>K,A,I thẳng hàng
c: Ta có; AK=AN
AI=AN
DO đó; KA=AI
=>A là trung điểm của KI