tìm GTNN của A=2x^2+3x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3\left(x^2-\frac{2}{3}x-\frac{1}{3}\right)\)
\(A=3\left(x^2-2\cdot\frac{1}{3}x+\frac{1}{9}-\frac{4}{9}\right)\)
\(A=\left(x-\frac{1}{3}\right)^2-\frac{4}{3}\)\(\supseteq-\frac{4}{3}\)
Dấu = xr khi x=1/3
Vậy Min A=-4/3 tại x=1/3
\(A=3x^2-2x-1\)
\(=3\left(x^2-\frac{2}{3}x-\frac{1}{3}\right)\)
\(=3\left(x^2-2.x.\frac{1}{3}+\frac{1}{9}-\frac{1}{9}-\frac{1}{3}\right)\)
\(=3\left(x-\frac{1}{3}\right)^2-\frac{4}{3}\)
Vì \(3\left(x-\frac{1}{3}\right)^2\ge0;\forall x\)
\(\Rightarrow3\left(x-\frac{1}{3}\right)^2-\frac{4}{3}\ge0-\frac{4}{3};\forall x\)
Hay \(A\ge\frac{-4}{3};\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy MIN \(A=\frac{-4}{3}\)\(\Leftrightarrow x=\frac{1}{3}\)
a) \(A=2x^2\)\(+\)\(10\)\(-\)\(1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(=2\left(x+\frac{5}{2}\right)^2\)\(=\frac{27}{2}\)> hoặc = \(\frac{-27}{2}\)\(=-13,5\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(x+\frac{5}{2}=0\)
\(x=\frac{-5}{2}=-2,5\)
Vậy GTLN của A bằng -13,5 khi x = -2,5
b) \(B=3x-2x^2\)
\(=\)\(-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left[\left(x-\frac{3}{4}\right)^2-\frac{9}{16}\right]\)
\(=-2\left(x-0,75\right)^2\)\(+\)\(\frac{9}{8}\)< hoặc = \(\frac{9}{8}\)\(=\)\(1,125\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(x-0,75=0\)
\(x=0,75\)
Vậy GTLN của B bằng 1,125 khi x = 0,75
Ta có:
\(\left|3x-1\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\)
\(\left(2y-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)
\(\Rightarrow\left|3x-1\right|+\left(2y-1\right)^2+2021\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(A_{min}=2021\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{2}\end{matrix}\right.\)
Câu 1:
\(M=x^2-3x+5\)
\(M=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}\)
\(M=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu = xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min M = 11/4 khi x=3/2
b)\(N=2x^2+3x\)
\(N=2\left(x^2+\frac{3}{2}x\right)\)
\(N=2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)-\frac{9}{8}\)
\(N=2\left(x+\frac{3}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu = xảy ra khi \(x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)
Vậy MIn N = -9/8 khi x=-3/4
c)Tự làm nha
Ta có : x2 - 3x + 5
= x2 - 2.x.\(\frac{3}{2}\) + \(\frac{3}{2}^2\) + \(\frac{11}{4}\)
= \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(\ge\frac{11}{4}\forall x\in R\)
Vậy GTNN của biểu thức là : \(\frac{11}{4}\) khi \(x=\frac{3}{2}\)
A=2x2 + 3x + 1
A=2(x2 + 3/2x + 9/16) -1/8
A=2(x+3/4)2 - 1/8
Vậy GTNN của A là -1/8
cho hỏi thế vì sao có 2(x2 + 3/2x + 9/16) -1/8)