Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(2x-3\right)^2-\frac{1}{2}\)
Vì: \(\left(2x-3\right)^2\ge0\)
=> \(\left(2x-3\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Vậy GTNN của A là \(-\frac{1}{2}\) khi \(x=\frac{3}{2}\)
b) \(B=\frac{1}{2}-\left|2-3x\right|\)
Vì: \(\left|2-3x\right|\ge0\)
=> \(-\left|2-3x\right|\le0\)
=> \(\frac{1}{2}-\left|2-3x\right|\le\frac{1}{2}\)
Vậy GTLN của B là \(\frac{1}{2}\)
a) \(A=\left|x-1\right|+2018\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow A\ge2018\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
1)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|y-5\right|+\left|y+2012\right|\ge\left|y-5+2012+y\right|=2007\)
Dấu "=" khi \(-2012\le x\le5\)
Vậy MinA=2007 khi \(-2012\le x\le5\)
2)Ta thấy:\(\left|2x-3\right|\ge0\)
\(\Rightarrow-\left|2x-3\right|\le0\)
\(\Rightarrow-5-\left|2x-3\right|\le-5\)
Dấu "=" khi \(x=\frac{3}{2}\)
Vậy MaxN=-5 khi \(x=\frac{3}{2}\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
Để A đạt GTNN thì 2|x-1009| và |2x+1| phải đạt GTNN
2|x-1009| \(\ge0\)
|2x+1| \(\ge0\)
=> Xét : Nếu 2|x-1009| + |2x+1| > 0
Thì |x-1009| khác 0
|2x+1| khác 0
Do đó :
\(x-1009>0\)
\(2x+1>0\)
\(\Rightarrow2\left|x-1009\right|=2x-2018+2x+1\)
\(=2019\)
Xét : Nếu 2|x-1009| = 0
|2x+1|=0
=> 2|x-1009|=|2x+1|=0
2 > 0 => |x-1009|=|2x+1| = 0
x - 1009 -2x - 1= 0
-x = 1010
x = -1010
=> 2|-1010-1009|+|2*-1010+1| > 2019
Vậy GTNN của A= 2019 đtạ được khi 2|x-1009| và |2x+1| khác 0
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
a) Vì : \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)
Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)
b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy....
Ta có:
\(\left|3x-1\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\)
\(\left(2y-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)
\(\Rightarrow\left|3x-1\right|+\left(2y-1\right)^2+2021\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(A_{min}=2021\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{2}\end{matrix}\right.\)