Phân tích đa thức sau thành nhân tử : 4(x-2)(x-1)(x+4)(x+8)+25x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x^2-1\)
\(=\left(2x\right)^2-1^2\)
\(=\left(2x-1\right)\left(2x+1\right)\)
\(b,25x^2-0,09\)
\(=\left(5x\right)^2-\left(0,3\right)^2\)
\(=\left(5x-0,3\right)\left(5x+0,3\right)\)
\(d,\left(x-y\right)^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
\(e,9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left[3-\left(x-y\right)\right]\left[3+\left(x-y\right)\right]\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
\(=\left(-x+y+3\right)\left(x-y+3\right)\)
\(f,\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2+4-4x\right)\left(x^2+4+4x\right)\)
\(=\left(x^2-2\cdot x\cdot2+2^2\right)\left(x^2+2\cdot x\cdot2+2^2\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
#\(Toru\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
a: =64x^4+16x^2y^2+y^4-16x^2y^2
=(8x^2+y^2)^2-(4xy)^2
=(8x^2+y^2-4xy)(8x^2+y^2+4xy)
b: =x^8+2x^4+1-x^4
=(x^4+1)^2-x^4
=(x^4-x^2+1)(x^4+x^2+1)
=(x^4-x^2+1)(x^4+2x^2+1-x^2)
=(x^4-x^2+1)(x^2+1-x)(x^2+x+1)
c: =(x+1)(x^2-x+1)+2x(x+1)
=(x+1)(x^2-x+1+2x)
=(x+1)(x^2+x+1)
d: =(x^2-1)(x^2+1)-2x(x^2-1)
=(x^2-1)(x^2-2x+1)
=(x-1)^2*(x-1)(x+1)
=(x+1)(x-1)^3
\(b,x^3-2x^2-4xy^2+x\)
\(=x\left(x^2-2x-4y^2+1\right)\)
\(=x\left[\left(x^2-2x+1\right)-4y^2\right]\)
\(=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]\)
\(=x\left(x-1-2y\right)\left(x-1+2y\right)\)
\(=x\left(x-2y-1\right)\left(x+2y-1\right)\)
\(---\)
\(c,\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-8\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\) (1)
Đặt \(y=x^2+7x+10\), thay vào (1) ta được:
\(y\left(y+2\right)-8\)
\(=y^2+2y+1-9\)
\(=\left(y+1\right)^2-3^2\)
\(=\left(y+1-3\right)\left(y+1+3\right)\)
\(=\left(y-2\right)\left(y+4\right)\)
\(=\left(x^2+7x+10-2\right)\left(x^2+7x+10+4\right)\)
\(=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
#Ayumu
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
(x+1)(x+2)(x+3)(x+4)-8
=[(x+1).(x+4)].[(x+2).(x+3)]-8
=(x2+5x+4).(x2+5x+6)-8
Đặt (x2+5x+4)=t =>(x2+5x+6)=t+2
Thay vào biểu thức ta có:
(x2+5x+4).(x2+5x+6)-8
t.(t+2)-8
=t2+2t+1-9
=(t+1)2-32
=(x2+5x+4+1)-32
=(x2+5x+5+3).(x2+5x+5-3)
=(x2+5x+8).(x2+5x+2)
=
ta làm như sau :
\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-8.\)
\(\Rightarrow\left(x^2+5X+4\right)\left(x^2+5x+6\right)-8\)
Đặt \(x^2+5x+4=t\)
\(\Leftrightarrow t\left(t+2\right)-8\)
\(\Leftrightarrow t^2+2t-8\Leftrightarrow t^2+2t+1-9\)
\(\Leftrightarrow\left(t+1\right)^2-3^2\)
\(\Leftrightarrow\left(t-2\right)\left(t+4\right)\)
\(\Leftrightarrow\left(x^2+5x+2\right)\left(x^2+5x+8\right)\)
Đặt A=4(x-2)(x+4)(x-1)(x+8)+25x\(^2\)
= \(4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)
Đặt t= \(x^2-8\)
Ta có : A= (t+2x)(t+7x)+25x\(^2\)
= \(4t^2+36xt+81x^2=\left(2t+9x\right)^2\)
=> A=[2(x\(^2\) -8)+9x] =(2x\(^2\) +9x-16)\(^2\)