2. tìm 2 số xy biết
a.\(\dfrac{x}{2}=\dfrac{y}{4}\)và \(x^2.y^2=2\)
b.4x=7y và \(x^2+y^2=260\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{y^2\cdot y^2}{16\cdot16}=\dfrac{x^2\cdot y^2}{4\cdot16}\\ =\dfrac{2}{64}=\dfrac{1}{32}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{32}\cdot2=\dfrac{1}{16}\\y=\dfrac{1}{32}\cdot4=\dfrac{1}{8}\end{matrix}\right.\\ vậy...\)
b, Ta có :
\(4x=7y\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{4}\\ Đặt\dfrac{x}{7}=\dfrac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=7k\\y=4k\end{matrix}\right.\)
Thay vào x2+y2=260, ta có :
\(x^2+y^2=260\Leftrightarrow\left(7k\right)^2+\left(4k\right)^2=260\\ \Leftrightarrow49\cdot k^2+16\cdot k^2=260\\ \Leftrightarrow k^2\cdot\left(49+16\right)=260\\ \Leftrightarrow k^2\cdot65=260\\ \Leftrightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=196\\y=64\end{matrix}\right.\\\left\{{}\begin{matrix}x=-196\\y=-64\end{matrix}\right.\end{matrix}\right.\\ Vậy... \)
x thuộc {14;-14;8;-8}
ko tin bn cứ thử lại cho chắc haaaa!!!!!
a.\(x=0;y=-1\)
\(\Rightarrow2.0-\dfrac{-1\left(0^2-2\right)}{0.-1-1}=0-\dfrac{2}{-1}=2\)
b.\(x=2\)
\(\Rightarrow4.2^2-3\left|2\right|-2=16-6-2=8\)
\(x=-3\)
\(\Rightarrow4.\left(-3\right)^2-3\left|-3\right|-2=36-9-2=25\)
c.\(x=-\dfrac{1}{5};y=-\dfrac{3}{7}\)
\(\Rightarrow5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6=5.\dfrac{1}{25}+3+6=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x=2 và biểu thức A ta đc
\(A=4.2^2-3.\left|2\right|-2=4.4-6-2=16-6-2=8\)
thay x=-3 biểu thức A ta đc
\(A=4.\left(-3\right)^2-3.\left|-3\right|-2=4.9-9-2=36-9-2=25\)
thay x=-1/5 ; y=-3/7 biểu thức B ta đc
\(B=5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6\)
\(B=5\cdot\dfrac{1}{25}+3+6\)
\(B=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
Từ 4x = 7y => \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}\)
Đặt \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}=k\Rightarrow\hept{\begin{cases}x=\frac{1}{4}k\\y=\frac{1}{7}k\end{cases}}\)
Khi đó : x2 + y2 = 260
<=> ( 1/4k )2 + ( 1/7k )2 = 260
<=> 1/16k2 + 1/49k2 = 260
<=> k2( 1/16 + 1/49 ) = 260
<=> k2.65/784 = 260
<=> k2 = 3136
<=> k = ±56
Với k = 56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot56=14\\y=\frac{1}{7}\cdot56=8\end{cases}}\)
Với k = -56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot\left(-56\right)=-14\\y=\frac{1}{7}\cdot\left(-56\right)=-8\end{cases}}\)
I don't now
sorry
.....................
a) ta có: \(\frac{x}{2}=\frac{y}{4}\Rightarrow\hept{\begin{cases}x=2k\\y=4k\end{cases}\Rightarrow\hept{\begin{cases}x^2=4k^2\\y^2=16k^2\end{cases}}}\)
mà x^2.y^2 = 2 => 4k^2.16k^2 = 2
64.k^4 = 2
k^4 = 1/32 = (1/2)^5 => không tìm được k
=> không tìm được x,y
b) ta có: \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}\)
ADTCDTSBN
có: \(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
=>...
c) Gọi chiều dài tấm vải thứ 1;2;3 lần lượt là a;b;c
ta có:- cắt tấm thứ 1 đi 1/2, tấm thứ 2 đi 1/3, tấm thứ 3 đi 1/4 chiều dài thì 3 tấm vải bằng nhau
\(\Rightarrow a.\frac{1}{2}=b.\frac{2}{3}=c.\frac{3}{4}\)
\(\Rightarrow a\cdot\frac{1}{2}\cdot\frac{1}{6}=b\cdot\frac{2}{3}\cdot\frac{1}{6}=c\cdot\frac{3}{4}\cdot\frac{1}{6}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}\)
- Tổng chiều dài 3 tấm vải là: 145 => a + b + c = 145
ADTCDTSBN
có: \(\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a+b+c}{12+9+8}=\frac{145}{29}=5\)
=>...
bn tự tính nha!
Đặt : \(\dfrac{x}{2}=\dfrac{y}{4}=k\)
=> x=2k ; y=4k
=> \(x^2.y^2\) = \(\left(2k\right)^2.\left(4k\right)^2\)=\(4k^2.16k^2\)=\(k^4=\dfrac{1}{16}\)
=> k = +- \(\dfrac{1}{4}\)
Với k = 1/4 => x = 1/2 , y = 1
Với k = -1/4 => x = -1/2 , y = -1
b) 4x=7y
=> x/7 = y/4
đặt x/7 = y/4 = k => x = 7k , y =4k
x^2+y^2 = (7k)^2+(4k)^2=65.k^2 = 260
=> k^2 = 4
=> k = +-2
với k =2 => x = 14 , y = 8
với k =-2 => x =-14 , y = -8