Tìm GTNN của bth :
\(-15+2\sqrt{3+9x^2+6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\dfrac{x+4\sqrt{x}+20}{2\left(\sqrt{x}+2\right)}=\dfrac{x+4\sqrt{x}+4+16}{2\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)^2+16}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{1}{2}\left(\sqrt{x}+2\right)+\dfrac{16}{2\left(\sqrt{x}+2\right)}\ge2\sqrt{\dfrac{1}{2}\left(\sqrt{x}+2\right).\dfrac{16}{2\left(\sqrt{x}+2\right)}}\)
\(=2\sqrt{4}=4\)
\(\Rightarrow Q_{min}=4\) khi \(\dfrac{1}{2}\left(\sqrt{x}+2\right)=\dfrac{16}{2\left(\sqrt{x}+2\right)}\Rightarrow\left(\sqrt{x}+2\right)^2=16\)
mà \(\sqrt{x}+2>0\Rightarrow\sqrt{x}+2=4\Rightarrow x=4\)
a, Vì (2x+1/2)4>= 0
=> (2x+1/2)4-1>= -1
=> Min A =-1 <=> x = -1/4
b, vì -(4/9x-2/15)6<= 0
=> 3-(4/9x-2/15)6<= 3
=> Max B = 3 <=> x=3/10
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(=\left|1-3x\right|+\left|3x-2\right|\)
\(\ge\left|1-3x+3x-2\right|=\left|-1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-3x\right)\left(3x-2\right)\ge0\Leftrightarrow\frac{1}{3}\le x\le\frac{2}{3}\)
Vậy \(A_{min}=1\) tại \(\frac{1}{3}\le x\le\frac{2}{3}\)
Áp dụng bất đẳng thức AM - GM:
\(\sqrt{\left(x^2-15\right)\left(x-3\right)}\le\dfrac{x^2-15+x-3}{2}=\dfrac{x^2+x-18}{2};\sqrt{x^2-15}\le\dfrac{x^2-15+1}{2}=\dfrac{x^2-14}{2};\sqrt{x-3}\le\dfrac{x-3+1}{2}=\dfrac{x-2}{2}\).
Do đó \(F\ge x^2+x-\dfrac{x^2+x-18}{2}-\dfrac{x^2-14}{2}-\dfrac{x-2}{2}-38=-21\).
Đẳng thức xảy ra khi x = 4.
Vậy...
\(Q=\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}+2011\)
\(Q=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}+2011\)
\(Q=\left|3x-1\right|+\left|5-3x\right|+2011\)
Đặt \(Q'=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)
Đẳng thức xảy ra \(\Leftrightarrow\left(3x-1\right)\left(5-3x\right)\ge0\)
\(\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\)
\(\Rightarrow Min_Q=Min_{Q'}+2011=4+2011=2015\)
Q = \(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}+2011\)
Q = \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-5\right)^2}+2011\)
Q = \(3x-1+3x-5+2011\)
Q = \(6x+2005\)
\(P=\sqrt[]{9x^2-6x+1}+\sqrt[]{25-30x+9x^2}\)
\(\Leftrightarrow P=\sqrt[]{\left(3x-1\right)^2}+\sqrt[]{\left(5-3x\right)^2}\)
\(\Leftrightarrow P=\left|3x-1\right|+\left|5-3x\right|\)
\(\Leftrightarrow P=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)
Vậy \(GTNN\left(P\right)=4\)