tìm x 2x(x-2)-(x-2)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn mãi mới hiểu cái đề bài @-@
`a)đk:` $\begin{cases}\sqrt{x^2-2x} \ge 0\\x+\sqrt{x^2-2x} \ne 0\\x-\sqrt{x^2-2x} ne 0\\\end{cases}$
`<=>` $\begin{cases}x \ge 2\,or\,x<0\\x \ne 0\end{cases}$
`b)A=(x+sqrt{x^2-2x})/(x-sqrt{x^2-2x})-(x-sqrt{x^2-2x})/(x+sqrt{x^2+2x})`
`=((x+sqrt{x^2-2x})^2-(x-sqrt{x^2-2x})^2)/((x+sqrt{x^2-2x})(x-sqrt{x^2-2x}))`
`=(x^2+x^2-2x+2sqrt{x^2-2x}-x^2-x^2+2x+2sqrt{x^2-2x})/(x^2-x^2+2x)`
`=(4sqrt{x^2-2x})/(2x)`
`=(2sqrt{x^2-2x})/x`
`c)A<2`
`<=>2sqrt{x^2-2x}<2x`
`<=>sqrt{x^2-2x}<x(x>=2)`(BP 2 vế thì x>=2)
`<=>x^2-2x<x^2`
`<=>2x>0`
`<=>x>0`
`<=>x>=2`
Vậy `x>=2` thì `A<2`.
( 2x - 3 )( x + 1 ) - 2x2 + 6x = 0
<=> 2x2 - x - 3 - 2x2 + 6x = 0
<=> 5x - 3 = 0
<=> 5x = 3
<=> x = 3/5
( x2 - x + 1 )( x - 3 ) - x3 + 4x2 = 0
<=> x3 - 4x2 + 4x - 3 - x3 + 4x2 = 0
<=> 4x - 3 = 0
<=> 4x = 3
<=> x = 3/4
( x2 - 2 )( x2 + 2 ) - x4 - 2x + 5 = 0
<=> ( x2 )2 - 4 - x4 - 2x + 5 = 0
<=> x4 + 1 - x4 - 2x = 0
<=> 1 - 2x = 0
<=> 2x = 1
<=> x = 1/2
( x - 3 )( x2 - 3x + 2 ) - ( x2 - 2x - 7 )( x - 2 ) + 2x2 - 2x = 0
<=> x3 - 6x2 + 11x - 6 - ( x3 - 4x2 - 3x + 14 ) + 2x2 - 2x = 0
<=> x3 - 6x2 + 11x - 6 - x3 + 4x2 + 3x - 14 + 2x2 - 2x = 0
<=> 12x - 20 = 0
<=> 12x = 20
<=> x = 20/12 = 5/3
a, \(\left(2x-3\right)\left(x+1\right)-2x^2+6x=0\)
\(\Leftrightarrow2x^2+2x-3x-3-2x^2+6x=0\Leftrightarrow5x-3=0\Leftrightarrow x=\frac{3}{5}\)
b, \(\left(x^2-x+1\right)\left(x-3\right)-x^3+4x^2=0\)
\(\Leftrightarrow x^3-3x^2-x^2+3x+x-3-x^3+4x^2=0\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)
c ; d tương tự nhé !
`a,x(x-1)-(x+2)^2=1`
`<=>x^2-x-x^2-4x-4=1`
`<=>-5x=5`
`<=>x=-1`
`b,(x+5)(x-3)-(x-2)^2=-1`
`<=>x^2+2x-15-x^2+4x-4+1=0`
`<=>6x-18=0`
`<=>x-3=0`
`<=>x=3`
`c,x(2x-4)-(x-2)(2x+3)=0`
`<=>2x(x-2)-(x-2)(2x+3)=0`
`<=>(x-2)(2x-2x-3)=0`
`<=>-3(x-2)=0`
`<=>x-2=0`
`<=>x=2`
`d,x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12`
`<=>3x^2+2x+x^2+2x+1-4x^2+25=-12`
`<=>4x+26=-12`
`<=>4x=-38`
`<=>x=-19/2`
`(x+2)(x^2 -2x+4) -x(x^2-2)=15`
`<=> x^3 +8 - x^3 + 2x-15=0`
`<=> 2x-7=0`
`<=> 2x=7`
`<=>x=7/2`
__
`(x-4)^2 -(x-2)(x+2)=6`
`<=>x^2 - 8x+16- x^2 +4-6=0`
`<=> -8x+14=0`
`<=> -8x=-14`
`<=>x=14/8= 7/4`
__
`x^4 -2x^3 +x^2-2x=0`
`<=>x(x^3-2x^2+x-2)=0`
`<=> x(x^3+x-2x^2-2)=0`
`<=>x(x(x^2+1) -2(x^2+1))=0`
`<=> x(x^2+1)(x-2)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow\left(x^3+2^3\right)-\left(x^3-2x\right)=15\)
\(\Leftrightarrow x^3+8-x^3+2x=15\)
\(\Leftrightarrow2x+8=15\)
\(\Leftrightarrow2x=15-8\)
\(\Leftrightarrow2x=7\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) \(\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)
\(\Leftrightarrow x^2-8x+16-\left(x^2-4\right)=6\)
\(\Leftrightarrow x^2-8x+16-x^2+4=6\)
\(\Leftrightarrow-8x+20=6\)
\(\Leftrightarrow-8x=6-20\)
\(\Leftrightarrow-8x=-14\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
c) \(x^4-2x^3+x^2-2x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^3+x\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x^2+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a) \(\left(x+3\right)^2-\left(x-2\right)^3=\left(x+5\right)\left(x^2-5x+25\right)-108\)
\(\Leftrightarrow x^2+6x+9-x^2+4x-4=x^3-5x^2+25x+5x^2-25x+125-108\)
\(\Leftrightarrow x^3-10x+12=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+6\right)=0\)
\(\Leftrightarrow x=2\)( do \(x^2+2x+6=\left(x+1\right)^2+4\ge4>0\))
\(a,\Rightarrow3x^2-3x+6-2x-3x^2=0\\ \Rightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\\ b,\Rightarrow\left(x-1\right)\left(x-1+x+2\right)=0\\ \Rightarrow\left(x-2\right)\left(2x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\\ c,\Rightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\\ \Rightarrow\left(x^2+1\right)\left(2x+3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\2x+3=0\end{matrix}\right.\\ \Rightarrow x=-\dfrac{3}{2}\\ d,\Rightarrow2x^2+x-6=0\\ \Rightarrow2x^2+4x-3x-6=0\\ \Rightarrow2x\left(x+2\right)-3\left(x+2\right)=0\\ \Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
( x + 2 )3 - ( 2x + 3 )2 + ( 2x + 3 )( 2x - 3 ) = ( x - 2 )( x2 + 2x + 4 ) - 6x( x + 2 )
⇔ x3 + 6x2 + 12x + 8 - ( 4x2 + 12x + 9 ) + 4x2 - 9 = x3 - 8 - 6x2 - 12x
⇔ x3 + 10x2 + 12x - 1 - 4x2 - 12x - 9 = x3 - 6x2 - 12x - 8
⇔ x3 + 6x2 - 10 = x3 - 6x2 - 12x - 8
⇔ x3 + 6x2 - 10 - x3 + 6x2 + 12x + 8 = 0
⇔ 12x2 + 12x - 2 = 0
⇔ 2( 6x2 + 6x - 1 ) = 0
⇔ 6x2 + 6x - 1 = 0 (*)
Δ = b2 - 4ac = 62 - 4.6.(-1) = 60
Δ > 0 nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-6+\sqrt{60}}{12}=\frac{-3+\sqrt{15}}{6}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-6-\sqrt{60}}{12}=\frac{-3-\sqrt{15}}{6}\end{cases}}\)
Vậy ...
a: ĐKXĐ: x<>-1
Để \(\dfrac{x^3-x^2+2}{x-1}\in Z\) thì \(x^3-x^2+2⋮x-1\)
=>\(x^2\left(x-1\right)+2⋮x-1\)
=>\(2⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
b: ĐKXĐ: x<>2
Để \(\dfrac{x^3-2x^2+4}{x-2}\in Z\) thì \(x^3-2x^2+4⋮x-2\)
=>\(x^2\left(x-2\right)+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
c: ĐKXĐ: x<>-1/2
Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì \(2x^3+x^2+2x+2⋮2x+1\)
=>\(x^2\left(2x+1\right)+\left(2x+1\right)+1⋮2x+1\)
=>\(1⋮2x+1\)
=>\(2x+1\in\left\{1;-1\right\}\)
=>\(2x\in\left\{0;-2\right\}\)
=>\(x\in\left\{0;-1\right\}\)