K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

\(\sqrt[3]{8x^2+17x-2}=x+2\\ \Leftrightarrow8x^2+17x-2=x^3+6x^2+12x+8\\ \Leftrightarrow x^3-2x^2-5x+10=0\\ \Leftrightarrow\left(x^2-5\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm\sqrt{5}\\x=2\end{matrix}\right.\)

Vậy PT có tập nghiệm S = \(\left\{\pm\sqrt{5};2\right\}\)

5 tháng 10 2019

PT \(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\end{cases}}\)

Xét \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)

\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)

\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) ( t/m)

Vậy nghiệm của PT là : \(x=\pm1\)

Chúc bạn học tốt !!!

7 tháng 8 2019

bình phương 2 vế lên là được 

7 tháng 8 2019

Cách đó mình biết rồi nhưng lâu lắm, đang tìm cách nhanh hơn kìa

21 tháng 7 2017

a đề sai hay sao mà vô nghiệm ?

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VP^2=\left(\sqrt{2x+1}+\sqrt{17-2x}\right)^2\)

\(\le\left(1+1\right)\left(2x+1+17-2x\right)=36\)

\(\Rightarrow VP^2\le36\Rightarrow VP\le6\)

Lại có: \(VT=x^4-8x^3+17x^2-8x+22\)

\(=\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6\ge6\)

Thấy: \(VT\le VP=6\)\(\Rightarrow VT=VP=6\)

\(\Rightarrow\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6=6\)

Suy ra x=4

ko hiểu chỗ nào ib nhé

1 tháng 4 2019

lời giải của bạn trên có 1 xíu sai nhé

Là BĐT Bu-nhi-a Cốp-xki chứ ạ ?

3 tháng 10 2017

\(x^2+2x\sqrt{x+\frac{1}{x^2}}=8x-1\)

\(\Leftrightarrow x^2+2x\left(x+\frac{1}{x^2}\right)^2=8x-1\)

\(\Leftrightarrow x^2+2x\left(x+\frac{1}{x^2}\right)^2=7x\)

\(\Rightarrow x^2+2x\left(x+\frac{1}{x^2}\right)^2>7x\Rightarrow\)Phương trình vô nghiệm

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x27x+33x25x1=x22x23x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
2x+43x27x+3+3x25x1=3x6x22+x23x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

(x2)(3x22+x23x+4+23x27x+3+3x25x1)=0⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23x723≤x≤7

Phương trình đã cho tương đương với:

3x183x2+4+x67x1+(x6)(3x2+x2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

(x6)(33x2+4+17x1+3x2+x2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

x=6⇔x=6

vì với 23x723≤x≤7

thì: (33x2+4+17x1+3x2+x2)(33x−2+4+17−x−1+3x2+x−2)>0

15 tháng 8 2017

đặt \(\sqrt{3x+1}=a\) 

=> pt <=> 4x^2 +a +6=a^2 +12x

chuyển hết nt sang vế phải để vt =0 ptđttnt có ntc=a+2x-3

câu 2 đặt \(\sqrt[3]{3x-5}=2y-3\) rồi làm tt như bài trên lớp

15 tháng 8 2017

sau khi chuyển  cậu có pt a62-4x^2-a+12x-6=0

=> a^2+2ax-3a-2ax-4x^2+6x+2a+4x-6=0

<=> (a+2x-3)(a-2x+2)=0