Cho \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{a}\)và a + b + c khác 0.
Tính giá trị biểu thức : M = \(\frac{a^3\cdot b^2\cdot c^{2011}}{b^{2016}}\)
Các bạn giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath
A = -4/5x(1/2+1/3+1/4)= -4/5x1 = -4/5
B = 6/19 x ( 3/4+4/3+-1/2)= 6/19x 19 = 6
C = 2002/2003x(3/4+5/6-19/12)=2003/2002x0=0
áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\Rightarrow a=b\\\frac{b}{c}=1\Rightarrow b=c\\\frac{c}{a}=1\Rightarrow c=a\end{cases}}\Rightarrow a=b=c\)
\(\Rightarrow\frac{a^3.b^2.c^{2011}}{b^{2016}}=\frac{a^{2016}}{a^{2016}}=1\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
\(M=\frac{a^3.b^2.c^{2011}}{b^{2016}}=\frac{b^{2011+3+2}}{b^{2016}}=\frac{b^{2016}}{b^{2016}}=1\)