Chứng minh rằng số a = 0,123456789... ( phần thập phân tạo bởi các số tự nhiên liên tiếp từ 1 ) không phải là số hữu tỉ .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình học lớp 5 mình trả lời không biết có đúng ko nếu đúng thì tớ thực sự giỏi.
Tại vì số thập phân a là số tự nhiên được viết từ 1 đến vân vân mà số tự nhiên thì có vô vàn số nên số thập phân a là số vô tỉ
Gọi 5 số tự nhiên liên tiếp đó là n - 2 ; n - 1 ; n ; n + 1 ; n + 2 ( n thuộc N , n > 2 )
Ta có : \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5.\left(n^2+n\right)\)
Vì \(n^2\)không thể tận cùng là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5
\(\Rightarrow\)\(5.\left(n^2+2\right)\)không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương ( đpcm )
Ta có:
1+2+3+...+2005≡(2005+1).2005:2≡2006.2005:2
≡1003.2005≡3.1≡3
(mod 4)
Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (k∈N) nên không là số chính phương (đpcm)
Gọi số có 3 chữ số tự nhiên liên tiếp là abc(a>b>c). Theo bài ra, ta có:
abc-cba = 198
a.100+b.10+c.1-(c.100+b.10+a) = 198
a.99-c.99 = 198
Mà a, b, c là 3 số tự nhiên liên tiếp, a>b>c => a -c = 2
=> a.99-c.99 = 198
(a-c).99 = 18
2.99 = 198
198 = 198 (đpcm)
Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có :
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1:
Ta có A= 20k + 10 = 4m + 2 (m thuộc N) ko là số chính phương
TH2:
Ta có: A= 20k + 15 = 4m + 3(m thuộc N) ko là số chính phương
đpcm
Gọi 5 số tự nhiên liên tiếp là \(n-2;n-1;n;n+1;n+2\)
Đặt tổng bình phương của chúng là \(A=\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2\)
\(=5n^2+10=5.\left(n^2+2\right)\)
n2 có tận cùng là 3 hoặc 8 \(\Rightarrow\) n2 + 2 có tận cùng là 5 hoặc 0 \(\Rightarrow\) n2 + 2 chia hết cho 5.
\(\Rightarrow\) 5.(n2 + 2) chia hết cho 25 \(\Rightarrow\) A không phải số chính phương.
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có :
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1:
Ta có A= 20k + 10 = 4m + 2 (m thuộc N) ko là số chính phương
TH2:
Ta có: A= 20k + 15 = 4m + 3(m thuộc N) ko là số chính phương
Ta thấy các số 1, 2, 3, 4, 5, 6, 7, 8, 9, ... không được lặp đi lặp lại nên không thể gọi là số thập phân vô hạn tuần hoàn hay hữu hạn tuần hoàn. Không thể viết dưới dạng số hữu tỉ nên số a không phải là số hữu tỉ.