K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 7. Trên bảng viết 100 dấu cộng và 101 dấu trừ. Với 200 lần thực hiện, mỗi lần xoá đi 2 dấubất kì rồi lại thêm vào một dấu (cộng hoặc trừ) để cuối cùng trên bảng chỉ còn lại 1 dấu duynhất. Biết rằng dấu được thêm vào sẽ là dấu trừ nếu trước đó đã xoá đi 2 dấu khác nhau,ngược lại dấu được thêm vào sẽ là dấu cộng. Hỏi dấu còn lại trên bảng là dấu gì?Bài 8....
Đọc tiếp

Bài 7. Trên bảng viết 100 dấu cộng và 101 dấu trừ. Với 200 lần thực hiện, mỗi lần xoá đi 2 dấu
bất kì rồi lại thêm vào một dấu (cộng hoặc trừ) để cuối cùng trên bảng chỉ còn lại 1 dấu duy
nhất. Biết rằng dấu được thêm vào sẽ là dấu trừ nếu trước đó đã xoá đi 2 dấu khác nhau,
ngược lại dấu được thêm vào sẽ là dấu cộng. Hỏi dấu còn lại trên bảng là dấu gì?
Bài 8. Trên bảng có các số 1, 2, 3, . . . , 99. Mỗi một lần thực hiện, cho phép xoá đi hai số bất
kỳ trên bảng và viết thêm lên bảng một số bằng hiệu của hai số xóa đi. Hỏi số cuối cùng là số
chẵn hay lẻ?
Bài 9. Trên bảng có các số 1; 2; 3; ...; 10. Mỗi một lần thực hiện, cho phép xoá đi hai số bất kỳ
trên bảng và thay bằng hiệu giữa tổng hai số đó và tích của chúng. Hỏi sau 9 lần thực hiện
phép xoá, thì số còn lại trên bảng là số nào?

Bài 18: Cho tam giác ABC có diện tích bằng 72cm2

. Trên cạnh AB lấy điểm M sao cho AM = 1⁄4
AB. Trên cạnh BC lấy điểm N sao cho BN = 1⁄2 NC. Trên phần kéo dài của cạnh AC về phía C lấy
điểm P sao cho CP = 1⁄2 AC. Tính diện tích MNP.

0
Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôncó 2 số chia hết cho nhau.Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bấtkì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48...
Đọc tiếp


Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôn
có 2 số chia hết cho nhau.
Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bất
kì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?
Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48 số 0 theo thứ tự 1; 0; 1; 0; 0; · · · ; 0. Mỗi phép biến đổi, ta
thay một 2 cặp 2 số liền nhau bất kì (x; y) bởi (x + 1; y + 1). Hỏi nếu ta lặp lại thao tác trên thì có thể đến 1
lúc nào đó thu được 50 số giống nhau hay không?
Bài 5. Trên đường tròn lấy theo thứ tự 12 điểm A1; A2; A3; · · · ; A12. Tại điểm A1 ta viết số -1, tại các đỉnh
còn lại ta viết số 1. Ở mỗi bước, chọn 6 điểm kề nhau bất kì và đổi dấu tất cả các số tại các điểm đó. Hỏi nếu
ta lặp lại thao tác trên thì có thể đến 1 lúc nào đó thu được trạng thái: điểm A2 viết số -1, các đỉnh còn lại
viết số 1, hay không?
Bài 6. Kí hiệu S(n) là tổng các chữ số của n. Tìm n, biết:
a) n + S(n) + S(S(n)) = 2019.
b) n + S(n) + S(S(n)) = 2020.
Bài 7. Giả sử (a1; a2; a3; · · · ; an) là 1 hoán vị của (1; 2; 3; · · · ; n) (là các số 1; 2; 3; · · · ; n nhưng viết theo
thứ tự tùy ý). Chứng minh rằng nếu n lẻ thì số P = (a1 - 1)(a2 - 2)(a3 - 3) · · · (an - n) là số chẵn.
Bài 8. Trên bàn có 6 viên sỏi, được chia thành vài đống nhỏ. Mỗi phép biến đổi được thực hiện như sau: ta
lấy ở mỗi đống 1 viên và lập thành đống mới. Hỏi sau 69 bước biến đổi như trên, các viên sỏi trên bàn được
chia thành mấy đống?
Bài 9. Xung quanh công viên người ta trồng n cây, giả sử trên mỗi cây có 1 con chim. Ở mỗi lượt, có 2 con
chim đồng thời bay sang cây bên cạnh theo hướng ngược nhau.
a) Với n lẻ, chứng tỏ rằng có thể có cách để tất cả các con chim cùng đậu trên một cây.
b) Chứng minh điều ngược lại với n chẵn.
 

0
5: Tìm 4 số tự nhiên có tổng bằng 2003. Biết rằng nếu xóa bỏ chữ số hàng đơn vị của số thứ nhất ta được số thứ hai. Nếu xóa bỏ chữ số hàng đơn vị của số thứ hai ta được số thứ ba. Nếu xóa bỏ chữ số hàng đơn vị của số thứ ba ta được số thứ tư.6: Một người mang ra chợ 5 giỏ táo gồm hai loại. Số táo trong mỗi giỏ lần lượt là: 20 ; 25 ; 30 ; 35 và 40. Mỗi giỏ chỉ...
Đọc tiếp

5: Tìm 4 số tự nhiên có tổng bằng 2003. Biết rằng nếu xóa bỏ chữ số hàng đơn vị của số thứ nhất ta được số thứ hai. Nếu xóa bỏ chữ số hàng đơn vị của số thứ hai ta được số thứ ba. Nếu xóa bỏ chữ số hàng đơn vị của số thứ ba ta được số thứ tư.

6: Một người mang ra chợ 5 giỏ táo gồm hai loại. Số táo trong mỗi giỏ lần lượt là: 20 ; 25 ; 30 ; 35 và 40. Mỗi giỏ chỉ đựng một loại táo. Sau khi bán hết một giỏ táo nào đó, người ấy thấy rằng : Số táo loại 2 còn lại đúng bằng nửa số táo loại 1. Hỏi số táo loại 2 còn lại là bao nhiêu?

7: Không được thay đổi vị trí của các chữ số đã viết trên bảng: 8 7 6 5 4 3 2 1 mà chỉ được viết thêm các dấu cộng (+), bạn có thể cho được kết quả của dãy phép tính là 90 được không?

3
5 tháng 6 2019

Bài giải: Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.

Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:

abcd + abc + ab + a = 2003.

Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)

Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:

1111 + bbb + cc + d = 2003.

bbb + cc + d = 2003 - 1111

bbb + cc + d = 892 (**)

b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.

Thay b = 8 vào (**) ta được:

888 + cc + d = 892

cc + d = 892 - 888

cc + d = 4

Từ đây suy ra c chỉ có thể bằng 0 và d = 4.

Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.

Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)

5 tháng 6 2019

Bài giải: Số táo người đó mang ra chợ là:

20 + 25 + 30 + 35 + 40 = 150 (quả)

Vì số táo loại 2 còn lại đúng bằng nửa số táo loại 1 nên sau khi bán, số táo còn lại phải chia hết cho 3.

Vì tổng số táo mang ra chợ là 150 quả chia hết cho 3 nên số táo đã bán phải chia hết cho 3. Trong các số 20, 25, 30, 35, 40 chỉ có 30 chia hết cho 3. Do vậy người ấy đã bán giỏ táo đựng 30 quả.

Tổng số táo còn lại là:

150 - 30 = 120 (quả)

Ta có sơ đồ biểu diễn số táo của loại 1 và loại 2 còn lại:

 Bồi dưỡng Toán lớp 5

Số táo loại 2 còn lại là:

120 : (2 + 1) = 40 (quả)

Vậy người ấy còn lại giỏ đựng 40 quả chính là số táo loại 2 còn lại.

Đáp số: 40 quả

Bài 57: Không được thay đổi vị trí của các chữ số đã viết trên bảng: 8 7 6 5 4 3 2 1 mà chỉ được viết thêm các dấu cộng (+), bạn có thể cho được kết quả của dãy phép tính là 90 được không?

Bài giải: Có hai cách điền:

8 + 7 + 65 + 4 + 3 + 2 + 1 = 90

8 + 7 + 6 + 5 + 43 + 21 = 90

Để tìm được hai cách điền này ta có thể có nhận xét sau:

Tổng 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 ; 90 - 36 = 54.

Như vậy muốn có tổng 90 thì trong các số hạng phải có một hoặc hai số là số có hai chữ số. Nếu số có hai chữ số đó là 87 hoặc 76 mà 87 > 54, 76 > 54 nên không thể được. Nếu số có hai chữ số là 65; 65 + 36 - 6 - 5 = 90, ta có thể điền:
8 + 7 + 65 + 4 + 3 + 2 + 1 - 90.

Nếu số có hai chữ số là 54 thì cũng không thể có tổng là 90 được vì 54 + 36 - 5 - 4 < 90

Nếu số có hai chữ số là 43 ; 43 < 54 nên cũng không thể được. Nếu trong tổng có 2 số có hai chữ số là 43 và 21 thì ta có 43 + 21 - (4 + 3 + 2 + 1) = 54. Như vậy ta có thể điền:

8 + 7 + 6 + 5 + 43 + 21 = 90.

26 tháng 5 2016
Mình đã có cách giải, mong các bạn kiểm chứng giúp! Bất biến ở đây là dù có thay đổi số đã cho như thế nào thì số lúc sau luôn là bội của 7. Thật vậy, giả sử 7^1998 = (A49) ̅ thì A x 100 + 49 chia hết cho 7. Do đó A là bội của 7. Lại có (A4) ̅ + 45 = ((A + 4)9) ̅ = A x 10 + 49 Là bội của 7. Gọi (Bb) ̅ = A x 10 + 49. Vì thế (Bb) ̅ là bội của 7 và ta cần chứng minh rằng B + 5b là bội của 7. Theo như ta lập luận (Bb) ̅ là bội của 7 suy ra B x 10 + b là bội của 7 và vì thế B x 20 + 2b là bội của 7 B + 5b Cộng hai đẳng thức trên ta được B x 21 + 7b là bội của 7. Do đó B + 5b chia hết cho 7, điều phải chứng minh. Kết luận, sau cùng không thể tồn tại số 〖1998〗^7 trên bảng.