nếu 1/c=1/2(1/a+1/b)
CMR a/b=(a-c)/(c-b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac})=4 \\<=>\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\dfrac{a+b+c}{abc}=4 \\<=>\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4(do\ a+b+c=abc) \\<=>\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2 (đpcm)\)
a, Thay a=1 ta có hệ phương trình:
1+\(\)1/b=c+\(\)1/1
Và 1+1/b=b+1/c
<=>c=1/b
Và1+1/b=b+1/1/b
Giải hệ này ta tìm được b=-1/2 và c=-2
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)=abc\)
\(\Leftrightarrow a^2b+abc+a^2c+ab^2+b^2c+abc+bc^2+ac^2=0\)
\(\Leftrightarrow ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)b\left(a+c\right)+ac\left(a+c\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ac\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left(a+b\right)\left(b+c\right)=0\)
Câu b :
Ta có :
\(a+b+c=abc\)
\(\Leftrightarrow1=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)
\(\Leftrightarrow2=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\Leftrightarrow4=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) \(+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(\)\(\Rightarrow\) \(\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2=4\)
\(\Rightarrow\) \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\left(đpcm\right)\)
Bài 2 :
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot1=4\)
( Do \(a+b+c=abc\) )
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) (đpcm)
P/s : Cho hỏi bài 1 có a,b,c > 0 không ?
Khuyến mãi thêm bài 1 :))
Áp dụng BĐT AM-GM ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\) (1)
Tương tự ta có :
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)(2), \(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2c}{b}\) (3)
Cộng các vế của BĐT (1) (2) và (3) và chia 2 ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)