tìm dư trong phép chia:\(x^{50}+x^{10}+x^5+x+1\) cho \(x^{20}+x^{10}+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Từ số 4! đến số 10! đều chia hết cho 20 do có thừa số 4.5=20.
-Mà \(1!+2!+3!=1+2+6=9\) chia 20 dư 9 nên tổng đó chia 20 dư 9.
-Từ số 4! đến số 10! đều chia hết cho 20 do có thừa số 4.5=20.
-Mà 1!+2!+3!=1+2+6=91!+2!+3!=1+2+6=9 chia 20 dư 9 nên tổng đó chia 20 dư 9.
-Bạn ạ bạn tham khảo từ bài của mình thì ghi tham khảo nhé!
mk lm cách khác, bn tham khảo nhé
\(P\left(x\right)=\left(x+5\right)\left(x+10\right)\left(x+15\right)\left(x+20\right)+2016\)
\(=\left(x^2+25x+100\right)\left(x^2+25x+150\right)+2016\)
Đặt \(x^2+25x+125=a\) ta có:
\(P\left(x\right)=\left(a-25\right)\left(a+25\right)+2016\)
\(=a^2-625+2016\)
\(=a^2-25+1416\)
\(=\left(a-5\right)\left(a+5\right)+1416\)
Thay trở lại ta được: \(P\left(x\right)=\left(x^2+25x+120\right)\left(x^2+25x+130\right)+1416\)
Ta thấy \(\left(x^2+25x+120\right)\left(x^2+25x+130\right)\) \(⋮\) \(x^2+25x+120\)
suy ra \(P\left(x\right)\) chia cho \(x^2+25x+120\) dư \(1416\)
Ta có : P(x) = (x + 5)(x + 20)(x +15)(x + 10)
=> P(x) = (x2 + 25x + 100)(x2 + 25x + 150)
=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150) - 20(x2 + 25x + 150)
=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150) - 20(x2 + 25x + 120) - 20.30
=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150 - 20) - 600
Vì (x2 + 25x + 120)(x2 + 25x + 150 - 20) chia hết cho (x2 + 25x + 120)
Nên : Số dư là : 600
\(a,f\left(x\right):g\left(x\right)=\left[\left(x-5\right)\left(x^3+2\right)\right]:\left(x-5\right)=x^3+2\\ \Rightarrow\text{Dư }0\\ b,f\left(x\right):g\left(x\right)=\left(8x^2-4x-2x+1+4\right):\left(2x-1\right)\\ =\left[4x\left(2x-1\right)-\left(2x-1\right)+4\right]:\left(2x-1\right)\\ =4x-1\left(\text{dư }4\right)\)
b: \(=\dfrac{8x^2-4x-2x+1+4}{2x-1}=4x-1+\dfrac{4}{2x-1}\)
\(x-1\in\left\{1;6;2;3;-1;-6;-2;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;7;3;4;0;-5;-1;-2\right\}\)
b: f(x)=3x^3+4x^2-2x+7
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{3x^3+4x^2-2x+7}{x+2}\)
\(=\dfrac{3x^3+6x^2-2x^2-4x+2x+4+3}{x+2}\)
=3x^2-2x+2+3/x+2
Số dư là 3
c: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3\left(x-5\right)+2\left(x-5\right)}{x-5}=x^3+2\)
=>Số dư là 0