K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: f(x)=3x^3+4x^2-2x+7

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{3x^3+4x^2-2x+7}{x+2}\)

\(=\dfrac{3x^3+6x^2-2x^2-4x+2x+4+3}{x+2}\)

=3x^2-2x+2+3/x+2

Số dư là 3

c: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3\left(x-5\right)+2\left(x-5\right)}{x-5}=x^3+2\)

=>Số dư là 0

1 tháng 9 2018

1) 

Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )

Ta có:

\(f\left(1\right)=a+b+c+d+e=0\)                                            (1)

\(f\left(2\right)=16a+8b+4c+2d+e=0\)                              (2)

\(f\left(3\right)=81a+27b+9c+3d+e=0\)                           (3)

\(f\left(4\right)=256a+64b+16c+4d+e=6\)                      (4)

\(f\left(5\right)=625a+125b+25c+5d+e=72\)                (5)

\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)

\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)

\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)

\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)

\(E=B-A=50a+12b+2c=0\)

\(F=C-B=110a+18b+2c=6\)

\(G=D-C=194a+24b+2c=66-6=60\)

Tiếp tục lấy H=F-E; K=G-F; M=H-K

Ta tìm được a

Thay vào tìm được b,c,d,e

2 tháng 9 2018

1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e

có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n) 

thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7 

Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42

Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).

2. Thiếu dữ liệu 

3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)

...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)

để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5 

Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý 

6 tháng 7 2018

GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2)    và (x+5) lần lượt là p(x) và Q(x)

theo bài ra ta có 

\(\hept{\begin{cases}f._x=\left(x-2\right).p._{\left(x\right)}+1............\left(1\right)\\f._{\left(x\right)}=\left(x+5\right).Q._{\left(x\right)}+8.......\left(2\right)\end{cases}}\)

GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2)(x+5)  [ là x^2+3x-10  phân tích thành]              =2x là g(x) và số dư là  nhị thức bậc nhất là ax+b

ta có,            \(f._{\left(x\right)}=\left(x-2\right)\left(x+5\right).g._{\left(x\right)}+ax+b....................\left(3\right)\)

TỪ (1) VÀ (3) TA CÓ X=2 THÌ                    \(\hept{\begin{cases}f._2=1\\f_2=2a+b\end{cases}}\)        

=>         2a+b=1    =>b=1-2a                (4)

TỪ (2) VÀ (3) TA CÓ X=-5   THÌ                     \(\hept{\begin{cases}f_{\left(-5\right)}=8\\f_{\left(-5\right)}=-5a+b\end{cases}}\)

=>        8=-5a+b  =>b=8+5a                 (5)

TỪ (4) VÀ (5) =>1-2a=8+5a    <=> a=-1

                                                => b=3

vậy số dư là   -x+3

vậy đa thức f(x) =(x-2)(x+5) .2x+(-x+3)=\(2x^3+6x^2-21x+3\)  

9 tháng 5 2023

Nó bị lỗi tý mong mn nhìn dc và giúp mình ạ

b: 1010

a: Năm nay là năm Quý Mão

22 tháng 7 2016

(x+1)(x+5)(x+3)(x+7)+2002=[(x+1)(x+7)][(x+5)(x+3)]+2002

                                                 =(x2+8x+7)(x2+8x+15)+2002

                                                 =(x2+8x+7)(x2+8x+12)+3(x2+8x+7)+2002

                                                 =(x2+8x+7)(x2+8x+12)+3(x2+8x+12)+1987

                                                 =(x2+8x+10)(x2+8x+12)+1987

Vậy (x+1)(x+5)(x+3)(x+7)+2002 chia x2+x+12 dư 1987.

27 tháng 7 2019

x^5 +x+1 x^3-x x^2 x^5-x^3 - x^3+x+1 +1 x^3-x - 2x+1

Vậy \(x^5+x+1\)chia cho \(x^3-x\) dư \(2x+1\)

27 tháng 7 2019

Ta có: \(x^3-x=x\left(x^2-1\right)=\left(x-1\right)x\left(x+1\right)\)

Để ý rằng đa thức chia là đa thức bậc 3 nên đa thức dư có bậc cao nhất là 2. Giả sử đó là ax2 + bx + c. 

Khi đó ta có \(x^5+x+1=\left(x-1\right)x\left(x+1\right).Q\left(x\right)+ax^2+bx+c\)

Do đẳng thức trên đúng với mọi x nên

Với x = 1 thì \(a+b+c=3\)(1)

Với x = 0 thì \(c=1\)

Với x = -1 thì -1 = a - b + c (2)

Thay c = 1 vào (1) và (2) ta được \(\hept{\begin{cases}a+b+1=3\\a-b+1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2\\a-b=-2\end{cases}}\Leftrightarrow2a=0\Leftrightarrow a=0\Rightarrow b=2\)

Vậy đa thức dư là \(0x^2+2x+1=2x+1\)