tính tổng 1*4+2*5+3*6+4*7+....+n(n+3)
1.2.3+4.5.6+.....+98.99.00
tìm x thuộc n biết 1 phần 9 * 3^4. 3^n=3^7
1 phần 9.27^n=3^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7^6+7^5+7^4 chia hết cho 11
= 7^4.2^2+7^4.7+7^4
= 7^4.(2^2+7+1)
= 7^4. 11
Vì tích này có số 11 nên => chia hết cho 7
1) \(32< 2^n< 128\)
\(\Rightarrow2^5< 2^n< 2^7\)
Vì \(5< n< 7\)
Nên \(n=6\)
Vậy \(32< 2^6< 128\)
2) \(2.16\ge2^n>4\)
\(\Rightarrow2^5\ge2^n>2^2\)
Vì \(5\ge n>4\)
nên \(n=5\)
Vậy \(2.16\ge2^5>4\)
3/ Tương tự
P/S: chỉ cần đổi các số ra lũy thừa là sẽ tính được!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Kết bạn với mình nha!
\(1,S=3+3^2+3^3+...+3^{20}\)(1)
\(\Rightarrow3S=3^2+3^3+3^4+...+3^{21}\)(2)
Lấy (2) -(1) ta có :
\(\Rightarrow2S=3^{21}-3\)
\(\Rightarrow S=\frac{3^{21}-3}{2}\)
\(3,A=1.2.3+2.3.4+3.4.5+...+\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow4A=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+\left(n-1\right)n\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right)n\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow4A=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Câu 2:
#include <bits/stdc++.h>
using namespace std;
double p1,p2;
int i,n;
int main()
{
cin>>n;
p1=1;
p2=1;
for (i=1; i<=n; i++)
{
if (i%2==0) p2=p2*(i*1.0);
else p1=p1*(i*1.0);
}
cout<<fixed<<setprecision(2)<<p1<<endl;
cout<<fixed<<setprecision(2)<<p2;
return 0;
}
3.
a) \(\left(x-1\right)^3=125\)
=> \(\left(x-1\right)^3=5^3\)
=> \(x-1=5\)
=> \(x=5+1\)
=> \(x=6\)
Vậy \(x=6.\)
b) \(2^{x+2}-2^x=96\)
=> \(2^x.\left(2^2-1\right)=96\)
=> \(2^x.3=96\)
=> \(2^x=96:3\)
=> \(2^x=32\)
=> \(2^x=2^5\)
=> \(x=5\)
Vậy \(x=5.\)
c) \(\left(2x+1\right)^3=343\)
=> \(\left(2x+1\right)^3=7^3\)
=> \(2x+1=7\)
=> \(2x=7-1\)
=> \(2x=6\)
=> \(x=6:2\)
=> \(x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!