cho tam giác ABC có 2 trung tuyến BD và CE cắt nhau tại G. Gọi M,N lần lượt là các trung điểm của BG và CG.
a) MNDE là hình bình hành
b) Tìm đk của tam giác ABC để MNDE là hình chữ nhật, hình thoi ( phần hình thoi này mk chưa làm đc)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBAC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra ED//MN và ED=MN
hay MNDE là hbh
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBAC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra ED//MN và ED=MN
hay MNDE là hình bình hành
có ED là đường tb của △ABC
=> ED//BC; ED=1/2BC
có MN là đường tb của △BCG
=> MN//BC ; MN = 1/2 BC
=> EDNM là hbh
để EDNM là hình thoi thì hbh EDNM phải có hai đường chéo vuông góc
=> MD⊥EN
=> BD⊥CE
Vậy để EDNM là hình thoi thì △ABC phải có 2 đường trung tuyến vuông góc
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và ED=BC/2(1)
Xét ΔGBC có
M là trung điểm của BG
N là trung điểm của CG
Do đó: MN là đường trung bình của ΔGBC
Suy ra: MN//BC và MN=BC/2(2)
Từ (1) và (2) suy ra MN//DE và MN=DE
hay MNDE là hình bình hành
a, Ta có: EA=BE,BG=CG
⇒EM là đg TB của △ABG ⇒EM=\(\dfrac{AG}{2}\),EM//AG (1)
Ta có: AD=CD,GN=NC
⇒DN là đg TB của △ACG ⇒DG=\(\dfrac{AG}{2}\),DG//AG (2)
Từ (1) và (2) ⇒ DG=EM,DG//EM ⇒Tứ giác MNDE là hbh
b, Tứ giác MNDE là hcn ↔ gócMED=90độ
mà ta có EM//AG (C/m câu a) ⇒ AG⊥ED
ta có: AE=EB,AD=DC ⇒ ED là đg TB của △ABC
⇒ ED//BC ⇒ AG⊥BC ⇒ AG là đg cao của △ABC
ta có BD và EC là 2 đg trung tuyên cắt nhau tại G
⇒ AG cũng là đg trung tuyến mà cũng là đg cao từ c/m trên
⇒ △ABC cân tại A
Vậy ...