K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

a: Xét ΔABC có

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔBAC

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

M là trung điểm của GB

N là trung điểm của GC

Do đó: MN là đường trung bình của ΔGBC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra ED//MN và ED=MN

hay MNDE là hbh

22 tháng 10 2021

a: Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔBAC

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

M là trung điểm của GB

N là trung điểm của GC

Do đó: MN là đường trung bình của ΔGBC

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra ED//MN và ED=MN

hay MNDE là hình bình hành

2 tháng 7 2015

Không trả lời được thì đừng có nhiều lời

 

23 tháng 12 2016

hình đây

A B C G C D M N

còn lại mk ko bít lm

21 tháng 10 2021

TL:

a,Glà trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD

Tương tự EG=GN suy ra MNDE là hình bình hành

^HT^

21 tháng 12 2021

a: Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC và ED=BC/2(1)

Xét ΔGBC có

M là trung điểm của BG

N là trung điểm của CG

Do đó: MN là đường trung bình của ΔGBC

Suy ra: MN//BC và MN=BC/2(2)

Từ (1) và (2) suy ra MN//DE và MN=DE

hay MNDE là hình bình hành

26 tháng 11 2015

GT KL Tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G, MB = MG, NG = NC a) MNDE là hình bình hành b) Điều kiện của tam giác ABC để tứ giác MNDE là hình chữ nhật, hình thoi, hình vuông

A B C E D G M N

 

15 tháng 3 2020

Hình tự vẽ

a) Trong tam giác ABC , có :

EA = EB ( CE là trung tuyến )

DA = DC ( DB là trung tuyến )

=> ED là đường trung bình của tam giác ABC

=> ED // BC (1) , DE = 1/2 BC (2)

Trong tam giác GBC , có :

MG = MB ( gt)

NG = NC ( gt)

=> MN là đương trung bình của tam giác GBC

=> MN // BC (3) , MN = 1/2 BC (4)

Từ 1 và 2 => ED // MN ( * )

Từ 3 và 4 => ED = MN ( **)

Từ * và ** => EDMN là hbh ( DHNB )

Bài làm

a) Xét tam giác ABC có:

E là trung điểm của AB ( do CE trung tuyến  )

D là trung điểm của AC ( Do BD trung tuyến )

=> ED là đường trung bình 

=> ED = 1/2 BC và ED // BC            (1) 

Xét tam giác GBC có:

M là trung điểm BG ( gt )

N là trung điểm GC ( gt )

=> MN là đường trung bình.

=> MN = 1/2 BC và MN // BC            (2) 

Từ (1)(2) => MN = ED và MN // ED

Xét tứ giác MNDE có:

MN = ED

MN // ED

=> MNDE là hình bình hành.

b) Để MNDE là hình chữ nhật 

<=> ME  |  MN

Giả sử tam giác ABC cân tại A

Nối AG

Xét tam giác ABG có:

E là trung điểm AB

M là trung điểm BG

=> ME là đường trung bình.

=> ME = 1/2 AG và ME // AG

Vì CE và BD ;à đường trung tuyến và cắt nhau tại G

=> G là giao điểm của 3 đường trung tuyến của tam giác ABC

=> AG là đường trung tuyến

Mà tam giác ABC cân ( theo giả sử )

=> AG vuông góc với BC

Hay AG cũng vuông góc với MN ( do BC // MN ở câu a )

Mà ME // AG

=> MN vuông góc với ME

Mà MNDE là hình bình hành

=> MNDE là hình chữ nhật.

cứ thế tự chứng minh là hình thoi rồi sẽ ra hình vuông nha. vì chỗ này dễ rồi. nên mik k chứng minh.

c) Vì MN = 1/2 BC ( cmt ) 

DE = 1/2 BC ( cmt )

=> MN + DE = 1/2 + BC + 1/2 BC = BC ( 1/2 + 1/2 ) = BC . 2/2 = BC . 1 = BC

=> MN + DE = BC ( đpcm )

# Học tốt #

11 tháng 1 2021

a, Ta có: EA=BE,BG=CG

⇒EM là đg TB của △ABG ⇒EM=\(\dfrac{AG}{2}\),EM//AG (1)

Ta có: AD=CD,GN=NC

⇒DN là đg TB của △ACG ⇒DG=\(\dfrac{AG}{2}\),DG//AG (2)

Từ (1) và (2) ⇒ DG=EM,DG//EM ⇒Tứ giác MNDE là hbh

b, Tứ giác MNDE là hcn ↔ gócMED=90độ

mà ta có EM//AG (C/m câu a) ⇒ AG⊥ED 

ta có: AE=EB,AD=DC ⇒ ED là đg TB của △ABC

⇒ ED//BC ⇒ AG⊥BC ⇒ AG là đg cao của △ABC

ta có BD và EC là 2 đg trung tuyên cắt nhau tại G

⇒ AG cũng là đg trung tuyến mà cũng là đg cao từ c/m trên

⇒ △ABC cân tại A

Vậy ...