vì sao 2^15 + 2^11 = (2^4+1).2^11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
Thấy số chính phương là các số có dạng 3k hoặc 3k+1
A=1015+1=1000.....000000000001
Tổng các chữ số của A là 1+0+0+...+0+1=2
2 có dạng 3k+2
=> A có dạng 3k+2 nên A ko phải số chính phương
B chia hết cho B thì chắc chia hết cho 3
C thì
2) x2 + y2 = 3z2 => x2 + y2 chia hết cho 3
Vì x2 ; y2 là số chính phương nên x2 ; y2 chia cho 3 dư 0 hoặc 1
Nếu x2 hoặc y2 hoặc x2 và y2 chia cho 3 dư 1 => x2 + y2 chia cho 3 dư 1 hoặc 2 ( trái với đề bai)
=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố => x; y đều chia hết cho 3
=> x2; y2 chia hết cho 9 => 3z2 chia hết cho 9 => z2 chia hết cho 3 ; 3 là số nguyên tố => z chia hết cho 3
Vậy...
2/12 phải là 2/15 chứ
muốn cộng 2/15 với 3/5 thì phải quy đồng mẫu số, 15 chia được cho 5 nên lấy 15 là mẫu số chung. 15 chia 5 bằng bao nhiêu thì bạn lấy số đó nhân với 3 luôn thì thành 9/15 đó
a: \(=\left(15-6-\dfrac{13}{18}\right):\dfrac{298}{27}-\dfrac{17}{8}:\dfrac{51}{40}\)
\(=\dfrac{149}{18}\cdot\dfrac{27}{298}-\dfrac{5}{3}=\dfrac{3}{2}-\dfrac{5}{3}=\dfrac{9-10}{6}=\dfrac{-1}{6}\)
b: \(=\dfrac{-16}{5}\cdot\dfrac{-15}{64}+\dfrac{-22}{15}:\dfrac{11}{2}\)
\(=\dfrac{3}{4}-\dfrac{4}{15}=\dfrac{29}{60}\)
c: \(=\dfrac{-7}{9}\left(\dfrac{4}{11}+\dfrac{7}{11}\right)+5+\dfrac{7}{9}=\dfrac{-7}{9}+\dfrac{7}{9}+5=5\)
d: \(=\dfrac{1}{2}\cdot\dfrac{4}{3}\cdot10\cdot\dfrac{1}{5}\cdot\dfrac{3}{4}=1\)
e: \(=\dfrac{4}{25}+\dfrac{11}{2}\cdot\dfrac{5}{2}+\dfrac{-23}{4}=\dfrac{204}{25}\)
a)\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{23.27}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)
b)\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
c)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{13}+2\left(1-\frac{1}{10}\right)=\frac{10}{39}+\frac{9}{5}=\frac{401}{195}\)
\(\left(-\dfrac{1}{2}\right)^2\div\dfrac{1}{4}-2\times\left(-\dfrac{1}{2}\right)^2\\= \dfrac{1}{4}\div\dfrac{1}{4}-2\times\dfrac{1}{4}\\ =1-\dfrac{1}{2}\\ =\dfrac{1}{2}\)
\(\left(-2\right)^3\times-\dfrac{1}{24}+\left(\dfrac{4}{3}-1\dfrac{5}{6}\right)\div\dfrac{5}{12}\)
= \(-6\times-\dfrac{1}{24}+\left(\dfrac{4}{3}-\dfrac{11}{6}\right)\div\dfrac{5}{12}\)
= \(\dfrac{1}{4}+-\dfrac{1}{2}\div\dfrac{5}{12}\)
= \(\dfrac{1}{4}+-\dfrac{6}{5}\)
= \(\dfrac{1}{4}-\dfrac{6}{5}\)
= \(-\dfrac{19}{20}\)
\(\left(6\dfrac{4}{9}+\dfrac{7}{11}\right)-\left(4\dfrac{4}{9}-2\dfrac{4}{11}\right)\\ =\dfrac{58}{9}+\dfrac{7}{11}-\dfrac{40}{9}+\dfrac{26}{11}\\ =\dfrac{58}{9}-\dfrac{40}{9}+\dfrac{7}{11}+\dfrac{26}{11}\\ =12+3\\ =15\)
\(a,\left(\dfrac{-1}{2}\right)^2:\dfrac{1}{4}-2\left(-\dfrac{1}{2}\right)^2\)
\(=\left(-\dfrac{1}{2}\right)^2\left(4-2\right)\)
\(=\dfrac{1}{4}.2=\dfrac{1}{2}\)
\(b,\left(-2\right)^3.\dfrac{-1}{24}+\left(\dfrac{4}{3}-1\dfrac{5}{6}\right):\dfrac{5}{12}\)
\(=\left(-8\right).\dfrac{-1}{24}+\left(-\dfrac{1}{2}\right).\dfrac{12}{5}\)
\(=\dfrac{1}{3}+\left(-\dfrac{1}{5}\right)=\dfrac{2}{15}\)
\(c,\left(6\dfrac{4}{9}+\dfrac{7}{11}\right)-\left(4\dfrac{4}{9}-2\dfrac{4}{11}\right)\)
\(=\dfrac{701}{99}-\dfrac{206}{99}=\dfrac{495}{99}=5\)
\(d,10\dfrac{1}{5}-5\dfrac{1}{2}.\dfrac{60}{11}+\dfrac{3}{15\%}\)
\(=\dfrac{51}{5}-30+20=\dfrac{1}{5}\)
\(e,\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)
\(=\dfrac{5}{7}\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)=\dfrac{5}{7}.\left(-\dfrac{7}{11}\right)\)
\(=-\dfrac{5}{11}\)
\(f,\dfrac{-5}{7}.\dfrac{2}{11}+\left(-\dfrac{5}{7}\right).\dfrac{9}{11}+1\dfrac{5}{7}\)
\(=\left(-\dfrac{5}{7}\right)\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{12}{7}\)
\(=\left(-\dfrac{5}{7}\right)+\dfrac{12}{7}=1\)