Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác EDCB có
A là trung điểm của đường chéo EC
A là trung điểm của đường chéo BD
Do đó: EDCB là hình bình hành
Xét ΔACM và ΔAEN có
\(\widehat{ACM}=\widehat{AEN}\)
AC=AE
\(\widehat{CAM}=\widehat{EAN}\)
Do đó: ΔACM=ΔAEN
Suy ra: MC=NE
Chú ý: BEDC là hình bình hành
Ta có: DEAN = DCAM (g - c - g) Þ NE = MC
Bài1:
Xét tứ giác EDCB có
A là trung điểm chung của EC và DB
nên EDCB là hình bình hành
Suy ra: ED//BC và ED=BC
Xét ΔENA và ΔCMA có
góc EAN=góc CAM
AE=AC
góc AEN=góc ACM
Do đó: ΔENA=ΔCMA
=>EN=CM
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xet ΔNAB có
AC.BM là các đường cao
AC cắt BM tại E
Do đó: E là trực tâm
=>NE vuông góc với AB
b: Xét tứ giác NEAF có
M là trung điểm chung của NA và EF
nên NEAF là hình bình hành
=>NE//AF
=>AF vuông góc với AB
=>FA là tiêp tuyến của (O)
* Xét tứ giác ABCD, ta có:
MA = MC (gt)
MB = MD (định nghĩa đối xứng tâm)
Suy ra: Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
⇒ AD // BC và AD = BC (1)
* Xét tứ giác ACBE, ta có:
AN = NB (gt)
NC = NE (định nghĩa đối xứng tâm)
Suy ra: Tứ giác ACBE là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) ⇒ AE // BC và AE = BC (2)
Từ (1) và (2) suy ra: A, D, E thẳng hàng và AD = AE
Nên A là trung điểm của DE hay điểm D đối xứng với điểm E qua điểm A.
Xét tứ giác EDCB có
A là trung điểm chung của EC và BD
nen EDCB là hình bình hành
SUy ra: ED//CB và ED=CB
Xét ΔANE và ΔAMC có
góc NEA=góc MCA
AE=AC
góc NAE=góc MAC
Do đó: ΔANE=ΔAMC
=>NE=MC