Phân tích đa thức sau thành nhân tử :
\(x^3+2+3\left(x^3-2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3+27+(x+3)(x+9)
= (x+3)(x2-3x+9)+(x+3)(x+9)
= (x+3)(x2-3x+9+x+9)
=(x+3)(x2-2x+18)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\\ =\left(x+3\right)\left(x^2-3x+9+x-9\right)\\ =\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
`(x+3)^4+(x+5)^4-2`
`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`
`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`
`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`
`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`
`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`
`=(x+4)(2x^3+24x^2+108x+176)`
Bạn gì ơi hình như phải ra \(2\left(t+4\right)^2\left(x^2+8x+22\right)\)chứ nhỉ???
x3+y(1-3x2)+x(3y2-1)-y3
= x3-3x2y+3xy2-y3+y-x
=(x-y)3 -(x-y)
=(x-y)(x2-2xy+y2-1)
cái chỗ kia giải thích dùm mìh đy : \(x^3-3x^2y+3xy^2-y^3+y-x\)
\(x^3+y\left(1-3x^2\right)+x\left(3y^2-1\right)-y^3\)
\(=x^3-3x^2y+3xy^2-y^3+y-x\)
\(=\left(x-y\right)^3-\left(x-y\right)\)
phân tích đa thức thành nhân tử cơ mà
=(x-y)3-(x-y)
=(x-y)[(x-y)2-1]
\(x^3-8+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4+2x\right)=\left(x-2\right)\left(x^2+4x+4\right)\\ =\left(x-2\right)\left(x+2\right)^2\)
=\(\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\)
=\(\left(x-2\right)\left(x^2+4x+4\right)\)
=\(\left(x-2\right)\left(x+2\right)^2\)
1. \(B=\left(x-2\right)\left(x+2\right)\left(x+3\right)-\left(x+1\right)^3\)
\(=\left(x^2-4\right)\left(x+3\right)-\left(x^3+3x^2+3x+1\right)\)
\(=x^3+3x^2-4x-12-x^3-3x^2-3x-1\)
\(=-7x-13\)
2. \(64-x^2-y^2+2xy=64-\left(x^2+y^2-2xy\right)\)
\(=64-\left(x-y\right)^2=\left(8+x-y\right)\left(8-x+y\right)\)
3. \(2x^3-x^2+2x-1=0\)
\(\Leftrightarrow x^2.\left(2x-1\right)+\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)
Vì \(x^2\ge0\)\(\Rightarrow x^2+1>0\)
\(\Rightarrow2x-1=0\)\(\Rightarrow2x=1\)\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
Bài 1.
B = ( x - 2 )( x + 2 )( x + 3 ) - ( x + 1 )3
= ( x2 - 4 )( x + 3 ) - ( x3 + 3x2 + 3x + 1 )
= x3 + 3x2 - 4x - 12 - x3 - 3x2 - 3x - 1
= -7x - 13
Bài 2.
64 - x2 - y2 + 2xy
= 64 - ( x2 - 2xy + y2 )
= 82 - ( x - y )2
= ( 8 - x + y )( 8 + x - y )
Bài 3.
2x3 - x2 + 2x - 1 = 0
<=> ( 2x3 - x2 ) + ( 2x - 1 ) = 0
<=> x2( 2x - 1 ) + 1( 2x - 1 ) = 0
<=> ( 2x - 1 )( x2 + 1 ) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\x^2+1=0\end{cases}}\Leftrightarrow x=\frac{1}{2}\)( vì x2 + 1 ≥ 1 > 0 ∀ x )
\(A=4x^2+6x=2x\left(2x+3\right)\)
\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)
\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)
\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)
\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)
\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)
\(8x^3+36x^2y+54xy^2+27y^3\\ =\left(2x\right)^3+3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2+\left(3y\right)^3\\ =\left(2x+3y\right)^3\\ =\left(2x+3y\right)\left(2x+3y\right)\left(2x+3y\right)\)
\(\left(x-y\right)^3-\left(x+y\right)^3\\ =\left(x-y-x-y\right)\left(x^2-2xy+y^2+x^2-y^2+x^2+2xy+y^2\right)\\ =-2y\left(3x^2+y^2\right)\)
\(\left(x+1\right)^3+\left(x-1\right)^3\\ =\left(x+1+x-1\right)\left(x^2+2x+1-x^2+1+x^2-2x+1\right)\\ =2x\left(x^2+3\right)\)
\(\left(x-1\right)^2-\left(x+1\right)^2\\ =\left(x-1-x-1\right)\left(x-1+x+1\right)\\ =-2.2x=-4x\)
a: =(2x)^3+3*(2x)^2*3y+3*2x*(3y)^2+(3y)^3
=(2x+3y)^3
b: (x-y)^3-(x+y)^3
=(x-y-x-y)[(x-y)^2+(x-y)(x+y)+(x+y)^2]
=-2y*[x^2-2xy+y^2+x^2-y^2+x^2+2xy+y^2]
=-2y(3x^2+y^2)
c: (x+1)^3+(x-1)^3
=(x+1+x-1)[(x+1)^2-(x+1)(x-1)+(x-1)^2]
=2x*[x^2+2x+1-x^2+1+x^2-2x+1]
=2x(x^2+3)
d: =(x-1-x-1)(x-1+x+1)
=2x*(-2)=-4x
\(x^3+2+3\left(x^3-2\right)\)
\(=x^3+2+3x^3-6\)
\(=4x^3-4\)
\(=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)
x^3+2+3(x^3-2)=(x^3-2)+4+3(x^3-2)=(x^3-2).4+4=(x^3-2+1).4=(x^3-1).4