K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

`(x+3)^4+(x+5)^4-2`

`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`

`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`

`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`

`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`

`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`

`=(x+4)(2x^3+24x^2+108x+176)`

10 tháng 7 2021

Bạn gì ơi hình như phải ra \(2\left(t+4\right)^2\left(x^2+8x+22\right)\)chứ nhỉ???

13 tháng 12 2023

\((x+5)^2+4(x+5)(x-5)+4(x^2-10x+25)=0\\\Rightarrow(x+5)^2+4(x+5)(x-5)+4(x^2-2\cdot x\cdot5+5^2)=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+4(x-5)^2=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+[2(x-5)]^2=0\\\Rightarrow[(x+5)+2(x-5)]^2=0\\\Rightarrow(x+5+2x-10)^2=0\\\Rightarrow(3x-5)^2=0\\\Rightarrow3x-5=0\\\Rightarrow3x=5\\\Rightarrow x=\frac53\\\text{#}Toru\)

13 tháng 12 2023

Sao đề là phân tích mà lại "= 0" vậy bạn?

6 tháng 12 2023

\(5x(2x+3)+6x+9\\=5x(2x+3)+3(2x+3)\\=(2x+3)(5x+3)\)

a: \(5x\left(2x+3\right)+6x+9\)

\(=5x\left(2x+3\right)+\left(6x+9\right)\)

\(=5x\left(2x+3\right)+3\left(2x+3\right)\)

\(=\left(2x+3\right)\left(5x+3\right)\)

b: \(3x\left(x+4\right)+48\left(x+4\right)+5\left(x+4\right)\)

\(=\left(x+4\right)\left(3x+48+5\right)\)

=(x+4)(3x+53)

 

3 tháng 11 2019

Ta có:

(x + 2)(x + 3)(x + 4)(x + 5) - 24

= [(x + 2)(x + 5)][(x + 3)(x + 4)] - 24

= (x2 + 5x + 2x + 10)(x2 + 4x + 3x + 12) - 24

= (x2 + 7x + 10)(x2 + 7x + 12) - 24

Đặt x2 + 7x + 10 = k 

=> k(k + 2) - 24 = k2 + 2k - 24 = k2 + 6x - 4x - 24 

                            = k(k + 6)  - 4(k  + 6)

                          = (k - 4)(k + 6)

=> (x + 2)(x + 3)(x + 4)(x + 5) - 24

= (x2 + 7x + 10 - 4)(x2 + 7x + 10 + 6)

= (x2 + 7x + 6)(x2 + 7x + 16)

3 tháng 11 2019

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)

Đặt \(x^2+7x+11=t\)thay vào (1) ta được:
\(\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-1-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)Thay \(t=x^2+7x+11\)ta được:

\(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)

\(=\left[x\left(x+1\right)+6\left(x+1\right)\right]\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

25 tháng 2 2017

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Let \(t=x^2+7x+10\) we have:

\(=t\left(t+2\right)-24=t^2+2t-24\)

\(=\left(t-4\right)\left(t+6\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

16 tháng 10 2020

(x - 5)2 - 4(x - 3)2 + 2(2x - 1)(x - 5) + (2x - 1)2

= [(x - 5)2 + 2(2x - 1)(x - 5) + (2x - 1)2) - [2(x - 3)]2

= (x - 5 + 2x - 1)2 - (2x - 6)2

= (3x - 6)2 - (2x - 6)2

= (3x - 6 - 2x + 6)(3x - 6 + 2x - 6) = x(5x - 12)

16 tháng 10 2020

( x - 5 )2 - 4( x - 3 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2

= [ ( x - 5 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2 ] - 22( x - 3 )2

= ( x - 5 + 2x - 1 )2 - ( 2x - 6 )2

= ( 3x - 6 )2 - ( 2x - 6 )2

= ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 )

= x( 5x - 12 )

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:

a. 

$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$

$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$

b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?

15 tháng 6 2017

\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

23 tháng 7 2023

\(S=x^6-8\)

\(S=\left(x^2\right)^3-2^3\)

\(S=\left(x^2-2\right)\left(x^4+2x^2+4\right)\)

⇒ Chọn C

23 tháng 7 2023

\(=\left(x^2\right)^3-2^3=\left(x^2-2\right)\left(x^4+2x^2+4\right)\\ =>C\)

2 tháng 8 2018

\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4+1\right)\left(x+4-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\left(x-3\right)\)

=.= hok tốt!!