Cho △ABC có các góc A=20o, B=30o, AB=60 cm. Đường cao kẻ từ C đến AB cắt AB tại P. Tính AP, PT, CP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính góc A (= 130 độ ). tam giác ACP vuông tại P => AP = cot A .CP (1)
tam giác BCP vuông tại P => BP = cot B . CP (2)
(1) +(2) => AP + BP =cot A .CP +cot B . CP
<=> AB = CP( cot A + cot B)
<=>60= CP ( cot 130 + cot 20 )
=> CP xấp xỉ 31.4
từ đó có thể dễ dàng tính ra AP và BP
góc ACB=180-20-30=130 độ
Xét ΔABC có
AB/sinC=AC/sinB=BC/sinA
=>BC/sin20=AC/sin30=60/sin130
=>\(BC\simeq26,79\left(cm\right);AC\simeq39,16\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot BA\cdot sinBCA\)
\(=\dfrac{1}{2}\cdot39.16\cdot26.79\cdot sin130=401.83\left(cm^2\right)\)
\(CP=2\cdot\dfrac{S_{ABC}}{AB}=\dfrac{2\cdot401.83}{60}\simeq13,39\left(cm\right)\)
Xét ΔCPA vuông tại P có
tan A=CP/AP
=>13,39/AP=tan20
=>\(AP\simeq36.79\left(cm\right)\)
PB=AB-AP=60-36,79=23,21cm
Thay CP = 13,394 vào (1) ta có:
AP = 13,394.cotg 20 ° ≈ 36,801 (cm)
Thay CP = 13,394 vào (2) ta có:
BP = 13,394.cotg 30 ° ≈ 27,526 (cm)
Đặt AP=x suy ra BP=60-x.Ta có phương trình
xtg\(20^0\)=(60-x)tg\(30^0\)
Đ/s:AP ≈36,801cm;BP=23,119cm;CP=13,396cm
Tham khảo nha
a: Xét ΔBAC vuông tại A có AH là đường cao
nên BA^2=BH*BC
b: BC=căn 18^2+24^2=30cm
CD là phân giác
=>DA/AC=DB/BC
=>DA/4=DB/5=(DA+DB)/(4+5)=18/9=2
=>DA=8cm