(9n+8)chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu n chẵn thì \(5n+8\) chẵn do đó \(\left(5n+8\right).\left(9n+17\right)\) chia hết cho 2.
- Nếu n lẻ thì \(9n+17\) lẻ do đó \(\left(5n+8\right).\left(9n+17\right)\) chia hết cho 2.
=> đpcm.
\(a,2n+3⋮6n+4\Leftrightarrow6n+9⋮6n+4\Leftrightarrow6n+9-6n-4⋮6n-4\Leftrightarrow5⋮6n-4\Leftrightarrow6n-4\in\left\{-5;5;1;-1\right\}\Leftrightarrow6n\in\left\{-1;9;5;-3\right\}\Leftrightarrow n\in\left\{-\dfrac{1}{6};1,5;\dfrac{5}{6};-0,5\right\}\)
b) Gọi T(n) là mệnh đề cần chứng minh
* Khi n=1, ta có: 101-9.1-1=0 chia hết cho 81. Vậy T(1) đúng
* Giả sử T(k) đúng tức là: 10k-9k-1 chia hết cho 81
* Chứng minh T(k) đúng tức là chứng minh: 10k+1-9(k+1)-1 chai hết cho 81
Ta có: 10k+1-9(k+1)-1=10k.10-9k-10
Vì 10k-9k-1 chia hết cho 81 nên: 10k-9k-1=n.81
10k=81n+9k+1
Do đó: 10k+1-9(k+1)-1=10(81n+9k+1)-9k-10=81(10n-k) chia hết cho 81
Vậy T(k+1) đúng.
Theo nguyên lý quy nạp, ta kết luận T(n) đúng với mọi n thuộc N
Bài 1 :
a) Ta có :
\(4n-7=4n+12-19=4.\left(n+3\right)-19\)
Ta thấy \(4.\left(n+3\right)⋮n+3\Rightarrow\left(-19\right)⋮n+3\Rightarrow\left(n+3\right)\inƯ\left(-19\right)\)
\(Ư\left(-19\right)=\left\{1;-1;19;-19\right\}\)
Do đó :
\(n+3=1\Rightarrow n=1-3=-2\)
\(n+3=-1\Rightarrow n=-1-3=-4\)
\(n+3=19\Rightarrow n=19-3=16\)
\(n+3=-19\Rightarrow n=-19-3=-22\)
Vậy \(n\in\left\{-2;-4;16;-22\right\}\)
BÀI 2:
a chia 8 dư 7 \(\Rightarrow\)\(a-7\)\(⋮\)\(8\)\(\Rightarrow\)\(a-7+128\)\(⋮\)\(8\)\(\Rightarrow\)\(a+121\)\(⋮\)\(8\)
a chia 125 dư 4 \(\Rightarrow\)\(a-4\)\(⋮\)\(125\)\(\Rightarrow\)\(a-4+125\)\(⋮\)\(125\)\(\Rightarrow\)\(a+121\) \(⋮\)\(125\)
suy ra: \(a+121\)\(\in BC\left(8;125\right)=B\left(1024\right)=\left\{0;1024;2048;3072;...\right\}\)
\(\Rightarrow\)\(a\)\(\in\left\{903;1927;....\right\}\)
mà \(100< a< 1000\)
\(\Rightarrow\)\(a=903\)
Ta có : 9n chia hết cho n-3;n-3chia hết cho n-3(1)
Xét n-3 chia hết cho n-3 suy ra 9.(n-3) chia hết cho n-3hay 9n-27 chia hết cho n-3(2)
(1) , (2) suy ra 9n-(9n-27) chia hết cho n-3
hay 27 chia hết cho n-3
suy ra n-3 thuộc tập hợp : 1,3,9,27
suy ra n thuộc tập hợp :4,6,12,30
* Ta có u 1 = 9 1 − 1 = 8 chia hết cho 8 (đúng với n = 1).
* Giả sử u k = 9 k − 1 chia hết cho 8.
Ta cần chứng minh u k + 1 = 9 k + 1 − 1 chia hết cho 8.
Thật vậy, ta có u k + 1 = 9 k + 1 − 1 = 9.9 k − 1 = 9 9 k − 1 + 8 = 9 u k + 8 .
Vì 9 u k và 8 đều chia hết cho 8, nên u k + 1 cũng chia hết cho 8.
Vậy với mọi số nguyên dương n thì u n chia hết cho 8.
ai đúng mình k cho
n là các số sau : 1,4,8