K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 5 2018
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
19 tháng 8 2016
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
17 tháng 11 2022
b: 9^2n có chữ số tận cùng là 1
=>9^2n+14 có chữ số tận cùng là 5
=>9^2n+14 chia hết cho 5
c: n(n^2+1)(n^2+4)
=n(n-2)(n-1)(n+1)(n+2)+10n^3
Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp
nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5
=>n(n^2+1)(n^2+4) chia hết cho 5
b) Gọi T(n) là mệnh đề cần chứng minh
* Khi n=1, ta có: 101-9.1-1=0 chia hết cho 81. Vậy T(1) đúng
* Giả sử T(k) đúng tức là: 10k-9k-1 chia hết cho 81
* Chứng minh T(k) đúng tức là chứng minh: 10k+1-9(k+1)-1 chai hết cho 81
Ta có: 10k+1-9(k+1)-1=10k.10-9k-10
Vì 10k-9k-1 chia hết cho 81 nên: 10k-9k-1=n.81
10k=81n+9k+1
Do đó: 10k+1-9(k+1)-1=10(81n+9k+1)-9k-10=81(10n-k) chia hết cho 81
Vậy T(k+1) đúng.
Theo nguyên lý quy nạp, ta kết luận T(n) đúng với mọi n thuộc N