K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2022

\(A=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}+1}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{3\sqrt{x}}{2\sqrt{x}+1}\)

Ta có: \(P=\left(\dfrac{3x-6\sqrt{x}}{x\sqrt{x}-2x}-\dfrac{1}{2-\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right)\cdot\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{x\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right)\cdot\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{3\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\)\(=\dfrac{3\sqrt{x}-6+\sqrt{x}+x-5\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)^2}\)

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

a) Ta có: \(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)

\(=\dfrac{6\left(\sqrt{5}-1\right)}{4}+\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{4}}-2\sqrt{5}\)

\(=\dfrac{3}{2}\left(\sqrt{5}-1\right)+\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-2\sqrt{5}\)

\(=\dfrac{3}{2}\sqrt{5}-\dfrac{3}{2}-2\sqrt{5}+\dfrac{\sqrt{5}+1}{2}\)

\(=-\dfrac{1}{2}\sqrt{5}-\dfrac{3}{2}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\)

=-1

 

Bài 1: 

a) Thay \(x=\dfrac{1}{4}\)vào B, ta được:

\(B=1:\left(\dfrac{1}{4}\cdot\dfrac{1}{2}+27\right)=1:\left(27+\dfrac{1}{8}\right)=\dfrac{8}{217}\)

b) Ta có: \(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{x-9+\sqrt{x}+3-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-6-x+2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

c) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow3-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 3\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne4\end{matrix}\right.\)

\(P=\left(2+\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(P=\left(\dfrac{2\left(2\sqrt{x}-3\right)+\left(\sqrt{x}-1\right)}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(P=\left(\dfrac{4\sqrt{x}-6+\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1+\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)

\(P=\left(\dfrac{5\sqrt{x}-7}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)

\(P=\left(\dfrac{5\sqrt{x}-7}{2\sqrt{x}-3}\right):\left(\dfrac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)

\(P=\left(\dfrac{5\sqrt{x}-7}{2\sqrt{x}-3}\right):\left(\dfrac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)

\(P=\left(\dfrac{5\sqrt{x}-7}{2\sqrt{x}-3}\right).\left(\dfrac{2\sqrt{x}-3}{2\sqrt{x}+1}\right)\)

\(P=\dfrac{\left(5\sqrt{x}-7\right)\left(2\sqrt{x}-3\right)}{\left(2\sqrt{x}-3\right)\left(2\sqrt{x}+1\right)}\)

\(P=\dfrac{5\sqrt{x}-7}{2\sqrt{x}+1}\)

 

19 tháng 5 2021

undefined

19 tháng 5 2021

chữ xấu quá

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:
ĐK: $x\geq 0; x\neq 4; x\neq 9$

\(P=\frac{1}{\sqrt{x}+1}:\left[\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-2)(\sqrt{x}-3)}-\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}\right]\)

\(=\frac{1}{\sqrt{x}+1}:\frac{x-9-(x-4)+\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

Để $P>0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+1}>0$

$\Leftrightarrow \sqrt{x}-2>0$ (do $\sqrt{x}+1>0$)

$\Leftrightarrow x>4$

Kết hợp với ĐKXĐ suy ra $x>4; x\neq 9$

12 tháng 5 2021

a, \(P=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(P=\left(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(P=\dfrac{1}{\sqrt{x}+1}:\left[\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right]\)

\(P=\dfrac{1}{\sqrt{x}+1}:\left[\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(P=\dfrac{1}{\sqrt{x}+1}:\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(P=\dfrac{1}{\sqrt{x}+1}.\sqrt{x}-2=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

\(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(P=\left(\dfrac{2\left(2\sqrt{x}-3\right)-\left(\sqrt{x}-1\right)}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(P=\left(\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1+\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)

\(P=\left(\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)

\(P=\left(\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\right):\left(\dfrac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)

\(P=\left(\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\right):\left(\dfrac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)

\(P=\left(\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\right).\left(\dfrac{2\sqrt{x}-3}{2\sqrt{x}+1}\right)\)

\(P=\dfrac{\left(3\sqrt{x}-5\right)\left(2\sqrt{x}-3\right)}{\left(2\sqrt{x}-3\right)\left(2\sqrt{x}+1\right)}\)

\(P=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

11 tháng 5 2022

Giải gòi mà:v