K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

a) Vì O cách đều 3 cạnh của tam giác nên OD = OE = OF
Áp dụng định lý Pytago vào tam giác vuông OBF và tam giác vuông ODB ta có:
BF=√OB2−OF2BF=OB2−OF2
BD=√OB2−OD2BD=OB2−OD2
Mà OF = OD nên BF = BD.
Tương tự áp dụng định lý Pytago vào tam giác vuông OEC và tam giác vuông ODC suy ra CE = CD
∆BAM có AB = BM nên ∆BAM là tam giác cân tại B ⇒ˆBAM=ˆBMA⇒BAM^=BMA^
Xét ∆BAM có BF = BD, BA = BM nên theo định lý Ta – lét ta có :
BFBA=BDBM⇒DF//AM⇒BFBA=BDBM⇒DF//AM⇒ DFAM là hình thang
Hình thang DFAM có ˆFAM=ˆAMDFAM^=AMD^ nên DFAM là hình thang cân
⇒{MF=ADAF=MD⇒{MF=ADAF=MD
∆ANC có AC = CN nên ∆ANC cân tại C⇒ˆCAN=ˆCNA⇒CAN^=CNA^
Xét ∆ANC có CE = CD, CA = CN nên theo định lý Ta – lét ta có :
CECA=CDCN⇒DE//AN⇒CECA=CDCN⇒DE//AN⇒ DEAN là hình thang
Hình thang DEAN có ˆCAN=ˆCNACAN^=CNA^ nên DEAN là hình thang cân
⇒{NE=ADAE=ND⇒{NE=ADAE=ND
⇒MF=NE⇒MF=NE
b) Xét ∆OEA và ∆ODN ta có :
⎧⎪⎨⎪⎩OE=ODˆOEA=ˆODNEA=DN{OE=ODOEA^=ODN^EA=DN⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA
Xét ∆OAF và ∆OMD ta có :
⎧⎪⎨⎪⎩AF=MDˆOFA=ˆODMOF=OD{AF=MDOFA^=ODM^OF=OD⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM
⇒OM=ON⇒OM=ON hay ∆MON cân tại O.

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0

Điểm N ở đâu vậy bạn?

3 tháng 10

a) Xét 2 ▲vuông ADH và AHM, ta có: 

 HI và DI là đường trung tuyến của 2 ▲

⇒ DI = IH (=AI=IM)

⇒▲DIH cân tại I  

Ta có: ▲ ADI cân tại I (DI=AI) ⇒  góc DIM = 2. góc IAD

           ▲ AHI cân tại I (HI=AI) ⇒  góc HIM = 2. góc IAH

 ⇒ góc DIH = 2.(góc IAD + góc HAI ) = 2. góc DAH= 2 . 30 độ = 60 độ ⇒ ▲ DIH đều 

CMTT: ▲ IEH đều ⇒ DIEH là hình thoi 

b)  Gọi O là giao DE và HI và K là trung điểm AG, ta có IK là trung bình tam giác AMG và OG là trung bình tam giác KIH. 
=> MG//IK và OG//IK 
=> Tia MG và OG trùng nhau hay M, G, O thẳng hàng => MG, IH, DE đồng quy tại O 

Chúc bạn học tốt

14 tháng 11 2023

a/

��⊥�� (gt)

��⊥��⇒��⊥��

=> ME//AF

��⊥��⇒��⊥��

=> MF//AE

=> AEMF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có �^=90�

=> AEMF là HCN (hbh có 1 góc vuông là HCN)

b/

Ta có

MF

Xét tg vuông ABC có

MB=MC (gt); MF//AE => MF//AB 

=> AF=BF (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

MF=IF (gt)

=> AMCI là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có 

��⊥��⇒��⊥��

=> AMCI là hình thoi (hbh có 2 đường chéo vuông góc là hình thoi)

c/

Ta có

AI//CM (cạnh đối hình thoi) => AI//BC => ABCI là hình thang

Xét tứ giác ABMI có

AI//BC (cmt) => AI//BM

MF//AB (cmt) => MI//AB

=> ABMI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Để ABCI là hình thang cân => AB=CI (1)

Ta có

AB=MI (cạnh đối hình bình hành ABMI) (2)

AM=CI (cạnh đối hình thoi AMCI) (3)

Từ (1) (2) (3) => AB=AM=MI=CI

Xét tg vuông ABC có

BM=CM ⇒��=��=��=��2 (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> AB=AM=BM => tg ABM là tg đều ⇒�^=60�

Để ABCI là hình thang cân thì tg vuông ABC có �^=60�

d/

Xét tứ giác ADBM có

DE=ME (gt)

AE=BE (gt)

=> ADBM là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AD//BM (cạnh đối hbh) => AD//BC

Ta có

AI//CM (cạnh đối hình thoi AMCI)

=> A;D;I thẳng hàng (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)

Ta có

AD=BM (cạnh đối hbh ADBM)

AI=CM (cạnh đối hình thoi AMCI)

BM=CM (gt)

=> AD=AI => A là trung điểm DI

chúc bạn học tốt

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

b: Xét tứ giác NKIM có

D là trung điểm của NI

D là trung điểm của KM

Do đó: NKIM là hình bình hành

mà NI vuông góc với KM

nên NKIM là hình thoi

c: Xét ΔABC có DN//AB

nên DN/AB=CN/CA=CD/CB

=>CN=1/2CA
hay N là trung điểm của AC

Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2

hay BM=1/2BA
=>M là trung điểm của AB

Ta có: ΔAHB vuông tại H 

mà HM là đường trung tuyến

nên MA=MH

Ta có: ΔAHC vuông tại H

mà HN là đừog trung tuyến

nên HN=AN

Xét ΔMAN và ΔMHN có

MA=MH

AN=HN

MN chung

Do đó: ΔMAN=ΔMHN

Suy ra:góc MHN=90 độ

6 tháng 9 2017