K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10

a) Xét 2 ▲vuông ADH và AHM, ta có: 

 HI và DI là đường trung tuyến của 2 ▲

⇒ DI = IH (=AI=IM)

⇒▲DIH cân tại I  

Ta có: ▲ ADI cân tại I (DI=AI) ⇒  góc DIM = 2. góc IAD

           ▲ AHI cân tại I (HI=AI) ⇒  góc HIM = 2. góc IAH

 ⇒ góc DIH = 2.(góc IAD + góc HAI ) = 2. góc DAH= 2 . 30 độ = 60 độ ⇒ ▲ DIH đều 

CMTT: ▲ IEH đều ⇒ DIEH là hình thoi 

b)  Gọi O là giao DE và HI và K là trung điểm AG, ta có IK là trung bình tam giác AMG và OG là trung bình tam giác KIH. 
=> MG//IK và OG//IK 
=> Tia MG và OG trùng nhau hay M, G, O thẳng hàng => MG, IH, DE đồng quy tại O 

Chúc bạn học tốt

Điểm N ở đâu vậy bạn?

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

b: Xét tứ giác NKIM có

D là trung điểm của NI

D là trung điểm của KM

Do đó: NKIM là hình bình hành

mà NI vuông góc với KM

nên NKIM là hình thoi

c: Xét ΔABC có DN//AB

nên DN/AB=CN/CA=CD/CB

=>CN=1/2CA
hay N là trung điểm của AC

Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2

hay BM=1/2BA
=>M là trung điểm của AB

Ta có: ΔAHB vuông tại H 

mà HM là đường trung tuyến

nên MA=MH

Ta có: ΔAHC vuông tại H

mà HN là đừog trung tuyến

nên HN=AN

Xét ΔMAN và ΔMHN có

MA=MH

AN=HN

MN chung

Do đó: ΔMAN=ΔMHN

Suy ra:góc MHN=90 độ

18 tháng 12 2017

ai giúp mk đi đg cần gấp

18 tháng 12 2017

a)  ADME là hình chữ nhật vì có 3 góc vuông:  \(\widehat{A}\)\(\widehat{D}\)\(\widehat{E}\)= 900

b)  Để ADME là hình vuông thì AM là phân giác \(\widehat{A}\)

Vậy M là giao đường phân giác góc A với BC thì ADME là hình vuông

17 tháng 10 2023

a)\(\Delta ABC\) vuông tại A nên \(\widehat{BAC}=90^o\Rightarrow\widehat{DAE}=90^o\)

Có D là hình chiếu của M trên AB \(\Rightarrow MD\perp AB\Rightarrow\widehat{MDA}=90^o\)

Có E là hình chiếu của M trên AC \(\Rightarrow ME\perp AC\Rightarrow\widehat{AEM}=90^o\)

Xét tứ giác: \(ADEM\) có \(\left\{{}\begin{matrix}\widehat{DAE}=90^o\\\widehat{MDA}=90^o\\\widehat{AEM}=90^o\end{matrix}\right.\)

\(\Rightarrow\)Tứ giác ADEM là hình chữ nhật

Vậy tứ giác ADEM là hình chữ nhật.

b)\(\Delta ABC\) vuông tại A có AM là trung tuyến (M là trung điểm BC)

\(\Rightarrow AM=\dfrac{1}{2}BC\)

Mà \(AM=DE\) (tính chất hcn)

\(\Rightarrow DE=\dfrac{1}{2}BC\left(đpcm\right)\)

17 tháng 10 2023

Bổ sung đề: Tam giác ABC vuông tại A

loading... a) Xét tứ giác ADME có:

∠AEM = ∠EAD = ∠ADM = 90⁰ (gt)

⇒ ADME là hình chữ nhật

b) Do ADME là hình chữ nhật (cmt)

⇒ AM = DE (1)

Lại có:

AM là đường trung tuyến ứng với cạnh huyền BC

⇒ AM = BC/2 (2)

Từ (1) và (2) ⇒ DE = BC/2

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
11 tháng 12 2017

A B C M H F D K I G

Câu a và b cô hướng dẫn:

a) Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

b)  Tứ giác FDEA là hình bình hành nên AF // DE

c) Xét tam giác AFH có AD là đường cao đồng thời trung tuyến nên nó là tam giác cân.

Vậy thì AD là tia phân giác hay \(\widehat{FAD}=\widehat{DAH}\)

Do tam giác ABC vuông tại A, M là trung điểm BC nên  MA = MB = MC hay \(\widehat{BAM}=\widehat{ABM}\)

Vậy thì \(\widehat{FAD}+\widehat{BAM}=\widehat{DAH}+\widehat{ABM}=90^o\)

\(\Rightarrow\widehat{FAM}=90^o\)

Vậy tam giác AFM vuông.

c) Gọi giao điểm của AM và DE là G.

Do FA // DE mà AM vuông góc FA nên AM vuông góc DE.

Vậy thì ta có ngay AFDE là hình chữ nhật.

Suy ra KG giao AD tại trung điểm mỗi đường hay I cũng là trung điểm KG.

Vậy thì AM, DE và KI đồng quy tại điểm G.

16 tháng 12 2017

Em cảm ơn ạ !

Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

=>góc AED=góc AHD=góc ABC

góc AED+góc MAC=90 độ

=>góc MAC+góc B=90 độ

=>góc MAC=góc C

=>90 độ-góc MAC=90 độ-góc C

=>góc MAB=góc MBA

Xét ΔMAC có góc MAC=góc C

nên ΔMAC cân tại M

=>MA=MC(1)

Xét ΔMAB có góc MAB=góc B

nên ΔMAB cân tại M

=>MA=MB(2)

Từ(1) và(2) suy raMB=MC

hay M là trung điểm của BC