Cho A = 2 + 2^2 + 2^3 + 2^4 +..........+ 2^100
Chứng minh A chia cho 7 dư 2 ( gợi ý thôi nha )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
`1^3` \(⋮\) `1`
\(2^3⋮2\)
\(3^3⋮3\)
.................
\(100^3⋮100\)
`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)
vậy `A` \(⋮\)`B`
Để tính tổng của dãy số A=5+5^2+5^3+…+5^100, chúng ta có thể sử dụng công thức tổng của cấp số nhân. Công thức này là: S = a * (r^n - 1) / (r - 1), trong đó S là tổng của cấp số nhân, a là số hạng đầu tiên, r là công bội và n là số lượng số hạng. Trong trường hợp này, a = 5, r = 5 và n = 100. Áp dụng công thức, ta có: S = 5 * (5^100 - 1) / (5 - 1) Bạn có thể tính giá trị của S bằng cách sử dụng máy tính hoặc công cụ tính toán trực tuyến.
A=2+22(1+2+22)+25(1+2+22)+28(1+2+22)+....+298(1+2+22)=2+(1+2+22)(22+25+28+...+298)
2+7((22+25+28+...+298) chia hết cho 7
Ta thấy: 7((22+25+28+...+298) chia hết cho 7 nên khi cộng thêm 2 thì A chia cho 7 sẽ dư 2 (đpcm)
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$
`2A - A = - 1 + 2^{42}`$\\$
hay `A = -1 + 2^{42}`$\\$