cho a^2+b^2+c^2=ab+bc+ac
Tính giá trị biểu thức (a-b+1)^2018+(b-c-1)^2017+(a-c)^2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
a^2>hoặc=0(vì mang số mũ dương)
Tương tự => b^2 và c ^2 như a^2
mà a^2+b^2+c^2=1=>a=b=c=1
=> a^2016+b^2017+c^2018=1
Mình nghĩ \(a+b+c=1\) nữa chắc oke hơn :3
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow1-3abc=1-ab-bc-ca\Rightarrow3abc=ab+bc+ca\)
\(1=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(=1+2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca=0\Rightarrow3abc=0\)
Nếu \(a=0\Rightarrow b+c=1;b^2+c^2=1;b^3+c^3=1\)
\(\Rightarrow b^2+2bc+c^2=1\Rightarrow2bc=0\Rightarrow b=0\left(h\right)c=0\)
Cứ tiếp tục thì sẽ ra nhá :))
Có \(a+b+c=0;\overline{ab}+\overline{bc}+\overline{ca}=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
Mà \(a^2;b^2;c^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge0\)
Dấu "=" xảy ra khi a;b;c = 0
Thay vào biểu thức ta có:
\(\left(0-1\right)^{2016}+\left(0-1\right)^{2017}+\left(0-1\right)^{2018}\)
\(=\left(-1\right)^{2016}+\left(-1\right)^{2017}+\left(-1\right)^{2018}\)
\(=1+\left(-1\right)+1\)
\(=1\)
a2+b2+c2=ab+bc+ca
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
<=>(a-b)2+(b-c)2+(c-a)2=0
<=>a=b=c
mà a+b+c=3<=>a=b=c=1
=>P=0
Em tham khảo cách làm tại link: Câu hỏi của Cao Chi Hieu - Toán lớp 9 - Học toán với OnlineMath
Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)
mà a+b+c=6
nên \(a=b=c=\frac{6}{3}=2\)
Vậy: \(A=\left(1-a\right)^{2017}+\left(b-1\right)^{2017}+\left(c-2\right)^{2017}\)
\(=\left(1-2\right)^{2017}+\left(2-1\right)^{2017}+\left(2-2\right)^{2017}\)
\(=-1^{2017}+1^{2017}=0\)
\(a^2+b^2+c^2=ab+bc+ac\)
\(a^2+b^2+c^2-ab-bc-ac=0\)
\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)
\(\Rightarrow\left(a-b+1\right)^{2018}+\left(b-c-1\right)^{2017}+\left(a-c\right)^{2016}\)
\(=\left(a-a+1\right)^{2018}+\left(c-c-1\right)^{2017}+\left(a-a\right)^{2016}\)
\(=1^{2018}+\left(-1\right)^{2017}+0^{2016}\)
\(=1+\left(-1\right)+0\)
\(=0\)
Vậy......
P.s: các phần thay a=b=c vào biểu thức có thể thay toàn bộ bằng a hoặc bằng b hoặc bằng c đều được nha