y-2x+y-2=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
\(\hept{\begin{cases}8\left(2x+y\right)^2-10\left(2x+y\right)\left(2x-y\right)-3\left(2x-y\right)^2=0\\2x+y-\frac{2}{2x-y}=2\end{cases}}\)
\(\hept{\begin{cases}8\left(2x+y\right)^2-10\left(2x+y\right)\left(2x-y\right)-3\left(2x-y\right)^2=0\\\left(2x+y\right)\left(2x-y\right)-2=2\left(2x-y\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8\left(2x+y\right)^2-10\left(2x+y\right)\left(2x-y\right)-3\left(2x-y\right)^2=0\\\left(2x+y\right)\left(2x-y\right)=2\left(2x-y\right)+2\end{cases}}\)
\(\Rightarrow8\left(2+\frac{2}{2x-y}\right)^2-20\left(2x-y\right)-20-3\left(2x-y\right)^2=0\)
Giải pt này vs ẩn là (2x-y) được nghiệm là 2
Rồi bạn lm nốt nhá
* a mũ 2 hay 4 hay 6 ,... ( những số tự nhiên chẵn khác 0 ) đều lớn hơn hoặc bằng 0 với mọi a
Áp dụng :
a) (2x-8)^4 + (3y+45)^2 = 0
Vì : (2x-8)^4 >=0 , (3y+45)^2 >=0 với mọi x,y
=> (2x-8)^4 + (3y+45)^2 >=0
Dấu "=" xảy ra khi : 2x-8=3y+45=0
->(x;y)=(4;-15)
Những câu sau làm tương tự, ta được :
b) ...
Dấu "=" xảy ra khi : 2x-10=0 và x+y-7=0
->x=5 và 5+y-7=0
->(x;y)=(5;2)
c) 5x-15=0 và 2x-y+4=0
->x=3 và 6-y+4=0
->(x;y)=(3;10)
d) Trùng câu a
câu 1/ 5x(\(4x^2\)-2x+1) - 2x(\(10x^2\)-5x-2)
= 5x.\(4x^2\)-5x.2x+ 5x.1 - ( 2x.\(10x^2\)-2x.5x-2x.2)
= 9\(x^3\)-10\(x^2\)+5x - 20\(x^3\)+10\(x^2\)+4x
= (9\(x^3\)-\(20x^3\)) + (-10\(x^2\)+10\(x^2\)) + (5x+4x)
= \(-11x^3\) + 9x
à cj ơi, e 2k6, đọc phần lí thuyết r lm, nên có lỗi sai j mong cj thông cảm
\(đặt\) \(\sqrt{2x-1}=t\left(t\ge0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}t-y\left(1+2t\right)=-8\\-y^2-yt=t^2-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}t-y-2yt=-8\\-y^2-yt-t^2=-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t-y-2yt=-8\\t^2-2yt+y^2+3yt=12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}t-y-2yt=-8\\\left(t-y\right)^2+3yt=12\end{matrix}\right.\)
\(đặt\) \(\left\{{}\begin{matrix}t-y=a\\yt=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a-2b=-8\\a^2+3b=12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b=4\\b=\dfrac{13}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\a=-\dfrac{3}{2}\end{matrix}\right.\)\(\Rightarrow TH1:\left\{{}\begin{matrix}t-y=0\\yt=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}t=y=-2\left(ktm\right)\\t=y=2\left(tm\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}t=2=\sqrt{2x-1}\\y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2,5\\y=2\end{matrix}\right.\)
\(\Rightarrow TH2:\left\{{}\begin{matrix}t-y=\dfrac{-3}{2}\\yt=\dfrac{13}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{1}{4}\left(-3-\sqrt[]{61}\right),y=\dfrac{1}{4}\left(3-\sqrt{61}\right)\left(ktm\right)\\t=\dfrac{1}{4}\left(\sqrt{61}-3\right);y=\dfrac{1}{4}\left(3+\sqrt{61}\right)\left(tm\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{2x-1}=\dfrac{1}{4}\left(\sqrt{61}-3\right)\\y=\dfrac{1}{4}\left(3+\sqrt{61}\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{16}\left(43-3\sqrt{61}\right)\\y=\dfrac{1}{4}\left(3+\sqrt{61}\right)\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left\{...\right\}\)
y-2x+y-2=8
=>2y-2x=8+2
=>2.(y-x)=10
=>y-x=5