Tìm x biết
ax^2 +4x=3a^4-48
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x.\left(a^2+4\right)=3\left(a^4-16\right)\)
Vì \(a^2+4>0\)chia cả 2 vế cho \(a^2+4\)ta được:
\(x=\frac{3.\left(a^2+4\right)\left(a^2-4\right)}{a^2+4}\Leftrightarrow x=3.\left(a^2-4\right)\)
`a)sqrt{1-4x+4x^2}+5=x-2`
`<=>\sqrt{(2x-1)^2}=x-2-5`
`<=>|2x-1|=x-7(x>=7)`
`<=>[(2x-1=x-7),(2x-1=7-x):}`
`<=>[(x=-6(ktm)),(3x=8):}`
`<=>x=8/3(ktm)`
Vậy PTVN
`b)3sqrt{12+4x}+4/7sqrt{147+49x}=3/2sqrt{48+16x}+4(x>=-3)`
`<=>6sqrt{x+3}+4sqrt{x+3}=6sqrt{x+3}+4`
`<=>4sqrt{x+3}=4`
`<=>sqrt{x+3}=1<=>x+3=1`
`<=>x=-2(tm)`
Vậy `S={-2}`
a) \(\sqrt{1-4x+4x^2}+5=x-2\Leftrightarrow\sqrt{\left(1-2x\right)^2}+5=x-2\Leftrightarrow\left|1-2x\right|=x-7\left(1\right)\)TH1: \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow1-2x=x-7\Leftrightarrow3x=8\Leftrightarrow x=\dfrac{8}{3}\)(không thỏa đk)
TH2: \(1-2x< 0\Leftrightarrow x>\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow2x-1=x-7\Leftrightarrow x=-6\)(không thỏa đk)
Vậy \(S=\varnothing\)
b) \(3\sqrt{12+4x}+\dfrac{4}{7}\sqrt{147+49x}=\dfrac{3}{2}\sqrt{48+16x}+4\Leftrightarrow6\sqrt{3+x}+4\sqrt{3+x}=6\sqrt{3+x}+4\Leftrightarrow4\sqrt{3+x}=4\Leftrightarrow\sqrt{3+x}=1\Leftrightarrow3+x=1\Leftrightarrow x=-2\)
x4+4x3-4x2-48x-48=0
=> x4+4(x3-x2) - 48x = 48
=> x4 + 4[x2(x-1)] - 48x = 48
\(x^4+4x^3-4x^2-48x-48=0\)
\(\Leftrightarrow\)\(x^4-2x^3-4x^2+6x^3-12x^2-24x+12x^2-24x-48=0\)
\(\Leftrightarrow\)\(x^2\left(x^2-2x-4\right)+6x\left(x^2-2x-4\right)+12\left(x^2-2x-4\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-2x-4\right)\left(x^2+6x+12\right)\)
\(\Leftrightarrow\)\(\left[\left(x-1\right)^2-5\right]\left(x^2+6x+12\right)=0\)
\(\Leftrightarrow\)\(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)\left(x^2+6x+12\right)=0\)
Ta có: \(x^2+6x+12=\left(x+3\right)^2+3>0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x-1-\sqrt{5}=0\\x-1+\sqrt{5}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)
Vậy...
a)
A(x)= 5x^4 - 3 + 2x^2 - 6x + 7x^2 - x^4
A(x)= 4x^4 + 9x^2 - 6x - 3.
Bậc: 4.
B= -9x^2 + x - 3 - 4x^4 + 5x^3
B(x)= -4x^4 + 5x^3 - 9x^2 + x - 3
b)
N(x) = A(x) + B(x)= ( 4x^4 + 9x^2 - 6x - 3 ) + (-4x^4 + 5x^3 - 9x^2 + x - 3)
N(x)= 5x^3 - 5x - 6
M(x) = A(x) - B(x)= ( 4x^4 + 9x^2 - 6x - 3 ) -
(-4x^4 + 5x^3 - 9x^2 + x - 3)
M(x)= 8x^4 - 5x^3 + 18x^2 - 7x.
a: 132+2(x-4)=46
=>2(x-4)=46-132
=>2(x-4)=-86
=>\(x-4=-\dfrac{86}{2}=-43\)
=>x=-43+4=-39
b: \(9x-6^{17}:6^{15}=4x+48:12\)
=>\(9x-6^2=4x+4\)
=>9x-36=4x+4
=>9x-4x=36+4
=>5x=40
=>x=40/5=8