K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

A(x) chia cho B(x) có số dư bằng 2. Vậy m – 5 = 2 ⇒ m = 7.

8 tháng 1 2018

Các pạn giải hộ mk nha . Sáng mai mk phải nộp bài rùi huhu

AH
Akai Haruma
Giáo viên
18 tháng 8 2024

Lời giải:

Theo định lý Bê-du về phép chia đa thức:

Số dư của $A(x)$ khi chia cho $x+1$ là:

$A(-1)=(-1)^3+a(-1)^2+b(-1)+2=-1+a-b+2=5$

$\Rightarrow a-b=4(1)$

Số dư của $A(x)$ khi chia cho $x+2$ là:
$A(-2)=(-2)^3+a(-2)^2+b(-2)+2=-8+4a-2b+2=8$

$\RIghtarrow 4a-2b=14$

$\Rightarrow 2a-b=7(2)$

Từ $(1); (2)\Rightarrow a=3; b=-1$

31 tháng 12 2016

Dùng sơ đồ hoocno mà giải đi bạn

1 tháng 1 2017

(Câu trả lời của alibaba nguyễn đúng mà hài!!!)

Sơ đồ Horner hoạt động như sau:

 10abc
313a+93a+b+279a+3b+c+27
316a+276a+b+10827a+6b+c+351
3...............
  • Kẻ bảng, trên dòng đầu tiên ghi các hệ số của đa thức đầu tiên, ở đây là \(1,0,a,b,c\).
  • Theo định lí Bezout thì đa thức sẽ có nghiệm bội 3 là số 3, do đó chừa một cột bên tay trái ghi nghiệm (là số 3).
  • Hạ hệ số (là 1) xuống, thực hiện quy tắc "nhân ngang cộng chéo" (nhân từ nghiệm qua rồi cộng chéo lên).
  • VD: 3 nhân 1 cộng 0 là 3, viết 3. 3 nhân 3 cộng a là a+9, viết a+9. 3 nhân (a+9) cộng b là 3a+b+27, viết 3a+b+27...
  • Để 3 là nghiệm của đa thức thì hệ số cuối cùng là 0, tức là \(9a+3b+c+27=0\).
  • Tự làm tiếp, ra thêm 2 cái phương trình nữa...
14 tháng 12 2021

\(a,\Leftrightarrow4x^3-2x^2+a=\left(2x-3\right).a\left(x\right)\)

Thay \(x=\dfrac{3}{2}\Leftrightarrow4.\dfrac{27}{8}-2.\dfrac{9}{4}+a=0\)

\(\Leftrightarrow\dfrac{27}{2}-\dfrac{9}{2}+a=0\\ \Leftrightarrow a=-9\)

\(b,\Leftrightarrow3x^3+2x^2+x+a=\left(x+1\right).b\left(x\right)+2\)

Thay \(x=-1\Leftrightarrow-3+2-1+a=2\Leftrightarrow a=4\)

27 tháng 5 2023

Then kìu shuphu 🥹

3 tháng 1 2022

Bài 1:

Đặt \(a=\sqrt[7]{\dfrac{3}{5}};b=\sqrt[7]{\dfrac{5}{3}}\Rightarrow\left\{{}\begin{matrix}a+b=x\\ab=1\end{matrix}\right.\)

Ta có \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)

\(\Rightarrow a^3+b^3=x\left(x^2-3\right)=x^3-3x\)

Ta có \(a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=\left[\left(a+b\right)^2-2ab\right]^2-2\left(ab\right)^2\)

\(\Rightarrow a^4+b^4=\left(x^2-2\right)^2-2=x^4-4x^2+2\)

\(\Rightarrow\left(a^3+b^3\right)\left(a^4+b^4\right)=\left(x^3-3x\right)\left(x^4-4x^2+2\right)\\ =x^7-3x^5-4x^5+12x^3+2x^3-6x\\ =x^7-7x^5+14x^3-6x\)

Lại có \(\left(a^4+b^4\right)\left(a^3+b^3\right)=a^7+b^7+\left(ab\right)^3\left(a+b\right)=\dfrac{3}{5}+\dfrac{5}{3}+x=\dfrac{34}{15}+x\)

\(\Rightarrow x^7-7x^5+14x^3-6x=\dfrac{34}{15}+x\\ \Rightarrow15x^7-105x^5+210x^3-105x-34=0\left(1\right)\)

Vậy (1) nhận \(x=\sqrt[7]{\dfrac{3}{5}}+\sqrt[7]{\dfrac{5}{3}}\) làm nghiệm

3 tháng 1 2022

Bài 2 đa thức bậc 2 chia đa thức bậc 2 dư đa thức bậc 1 ??