cho n ko chia hết cho 3 .chứng tỏ n2 chia 3 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
n không chia hết cho 3
=> n đồng dư với 1 hoặc 2 (mod 3)
=>n^2 đồng dư với 1^2 hoặc 2^2(mod 3)
Vậy n^2 chia 3 dư 1
a) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)⋮2\)vì \(n\left(n+1\right)\)là tích 2 số TN liên tiếp . Do đó \(n\left(n+1\right)+1\)không chia hết cho 2
b) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)\)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra \(n\left(n+1\right)\)tận cùng bằng 1,3,7 không chia hết cho 5
Vì n không chia hết cho 3 nên n có thể được viết dưới dạng n = 3k+1 hoặc n = 3k+2 (k ∈ N*)
Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) = 3k(3k+1)+3k+1. Suy ra n 2 chia cho 3 dư 1.
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) = 3k(3k+2)+6k+4.Suy ra n 2 chia cho 3 dư 1.
=> ĐPCM
Vì \(a⋮̸3\) \(\rightarrow\left[{}\begin{matrix}a=3k+1\\a=3k+2\end{matrix}\right.\) với k tự nhiên.
\(a=3k+1\Rightarrow a^2=\left(3k+1\right)^2\equiv1\left(mod3\right)\)
\(a=3k+2\Rightarrow a^2=\left(3k+2\right)^2=9k^2+12k+4\equiv1\left(mod3\right)\)
Nên ta có đpcm.
Giải:
\(a⋮̸3\)
⇒\(a:3\) (dư 1 hoặc dư 2)
Xét các trường hợp:
+) \(a:3\) (dư 1)
\(a=3k+1\)
\(\Rightarrow a^2=\left(3k+1\right).\left(3k+1\right)=9k^2+6k+1=3.\left(3k^2+2k\right)+1\)
\(\Leftrightarrow a^2:3\) (dư 1)
+) \(a:3\) (dư 2)
\(a=3k+2\)
\(\Rightarrow a^2=\left(3k+2\right).\left(3k+2\right)=9k^2+12k+4=3.\left(3k^2+4k+1\right)+1\)
\(\Leftrightarrow a^2:3\) (dư 1)
Vậy \(a^2:3\) (dư 1)
Vì a;b \(⋮̸\) cho 3
\(\Rightarrow\)a; b chia 3 dư 1 hoặc dư 2
+ khi a; b chia 3 dư 1 \(\Rightarrow\)a= 3k + 1 ; b = 3q + 1 (k; q \(\in\)N* )
\(\Rightarrow\)ab - 1 = (3k + 1)(3q +1) -1 = 9kq + 3k + 3q + 1 - 1 = 9kq + 3k + 3q \(⋮\)3
+ khi a; b chia 3 dư 2 \(\Rightarrow\)a = 3k + 2 ; b = 3q +2 (k; q \(\in\)N* )
\(\Rightarrow\)ab - 1 = (3k + 2)(3q +2) -1 = 9kq + 3k + 3q + 4 - 1 = 9kq + 3k + 3q +3 \(⋮\)3
\(\Rightarrow\)ĐPCM
vậy ............
~~ học tốt ~~
n không chia hết cho 3
=> \(\orbr{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\)
TH1 : n = 3k + 1
\(n^2=\left(3k+1\right)^2\)
\(n^2=9k^2+6k+1\)
\(n^2=3\left(3k^2+2k\right)+1\)
=> n2 chia 3 dư 1 ( đpcm )
TH2 : n = 3k + 2
\(n^2=\left(3k+2\right)^2\)
\(n^2=9k^2+12k+4\)
\(n^2=3\left(3k^2+4k\right)+3+1\)
\(n^2=3\left(3k^2+4k+1\right)+1\)
=> n2 chia 3 dư 1 ( đpcm )
n2 : 3 dư 1, n = 2