cho d1:5x-2y=-1
d2:3x+4y=-11
d3:ax+by=c
xac dinh a,b,c de 3 duong thang dong quy biet d3 di qua M(2;1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, pt hoanh độ giao điểm cua 2 đg thẳng d1 và d2 la: 2x - 5 = 1 <=> x = 3
vậy tọa độ giao điểm cua d1 va d2 la A(3;1)
Để d1 , d2, d3 đồng quy thì d3 phải đi qua diem A(3;1)
Ta co pt: (2m - 3).3 - 1 = 1
<=> 6m - 9 -1 = 1
<=> 6m = 11 <=> m = 11/6
mấy bài còn lại tương tự nha
Gọi M là giao điểm của \(d_1\) và \(d_2\Rightarrow\) toạ độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}3x-2y+5=0\\2x+4y-7=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{8};\frac{31}{16}\right)\)
Do \(d//d_3\Rightarrow d\) nhận \(\overrightarrow{n_d}=\left(3;4\right)\) là 1 vtpt
Phương trình d:
\(3\left(x+\frac{3}{8}\right)+4\left(y-\frac{31}{16}\right)=0\Leftrightarrow24x+32y-53=0\)
Đặt 3 đường thẳng lần lượt là d1 , d2 và d3
Giao điểm của d1 và d2 là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}3x+2y=5\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{13}{7}\\y=\frac{-2}{7}\end{matrix}\right.\Rightarrow A\left(\frac{13}{7};\frac{-2}{7}\right)\)
Để 3 đường thẳng đồng quy ta thay \(\left\{{}\begin{matrix}x=\frac{13}{7}\\y=\frac{-2}{7}\end{matrix}\right.\)
vào d3 ta được
\(m\frac{13}{7}+7\frac{-2}{7}=11\Rightarrow m=7\)
Vậy để 3 đg thẳng đồng quy thì m=7