K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

Xét tam giác OAC và tam giác OBC có :
O1=O(gt)

OA=OB (gt)

OC chung 

=> tam giác OAc = tam giác OBC (cgc)

=> AC=BC (2 cạnh tương ứng ); A2=B2 (2 góc tương ứng )

Vì A1+A2 =180o(2 góc kề bù ) 

    B1 + B2=180o (2 góc kề bù)

MÀ A2= B2 (cmt)

=> A1=B1

b) Ta có : OA=OB (gt)

=> Tam giác OAB cân tại O

MÀ Oz là tia phân giác của tam giác OAB

=> Oz đồng thời là đường cao của tam giác OAB 

=> AB vuông góc với Oz

22 tháng 11 2023

a: Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)'

OC chung

Do đó: ΔOAC=ΔOBC

=>AC=BC và \(\widehat{OAC}=\widehat{OBC}\)

\(\widehat{OAC}+\widehat{xAC}=180^0\)(hai góc kề bù)

\(\widehat{OBC}+\widehat{yBC}=180^0\)(hai góc kề bù)

mà \(\widehat{OAC}=\widehat{OBC}\)

nên \(\widehat{xAC}=\widehat{yBC}\)

b: OA=OB

=>O nằm trên đường trung trực của AB(1)

CA=CB

=>C nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OC là đường trung trực của AB

=>OC\(\perp\)AB

=>Oz\(\perp\)AB

17 tháng 11 2019

Hình vẽ:

a) Ta có: Oz là tia phân giác của \(\widehat{xOy}\)nên \(\widehat{COA}=\widehat{COB}\)

Xét ΔOAC và ΔOBC có: \(\hept{\begin{cases}OA=OB\left(gt\right)\\\widehat{COA}=\widehat{COB}\left(cmt\right)\\OC.chung\end{cases}}\)=> ΔOAC = ΔOBC (c.g.c)

=> AC = BC (2 cạnh tương ứng)

và \(\widehat{OAC}=\widehat{OBC}\)(2 góc tương ứng)

Ta có: \(\hept{\begin{cases}\widehat{xAC}=\widehat{OAx}-\widehat{OAC}\\\widehat{yBC}=\widehat{OBy}-\widehat{OBC}\end{cases}}\)\(\hept{\begin{cases}\widehat{OAx}=\widehat{OBy}\left(=180^o\right)\\\widehat{OAC}=\widehat{OBC}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\widehat{xAC}=\widehat{yBC}\)

b) Gọi H là giao điểm của AB và Ox

Xét ΔOAH và ΔOBH có: \(\hept{\begin{cases}OA=OB\left(gt\right)\\\widehat{COA}=\widehat{COB}\left(cmt\right)\\OH.chung\end{cases}}\)=> ΔOAH = ΔOBH (c.g.c)

=> \(\widehat{OHA}=\widehat{OHB}\)(2 góc tương ứng)

ta có:  \(\widehat{AHB}=\widehat{OHA}+\widehat{OHB}=180^o\)mà \(\widehat{OHA}=\widehat{OHB}\)

=> \(\widehat{OHA}+\widehat{OHA}=180^o\Leftrightarrow2\cdot\widehat{OHA}=180^o\Leftrightarrow\widehat{OHA}=90^o\)

=> \(AB\perp Oz\)(đpcm)

Học tốt nha ^3^

13 tháng 12 2021

giả thiết kết luận đâu bn kẻ hình xong ghi giả thiết, kết luận ms làm chứhihi

a: Xét ΔOAC và ΔOBC có

OA=OB

góc AOC=góc BOC

OC chung

=>ΔOAC=ΔOBC

=>AC=BC và góc OAC=góc OBC

=>góc xAC=góc yBC

O y x z A B C

a) tam giác OBC và tam giác OAC có :

 OB=OA ( gt)

BOC=COA ( vì Oz là tia phân giác của xoy)

OC là cạnh chung

=> tam giác OBC = tam giác OAC ( cgc)

=>AC=BC ( 2 cạnh tương ứng )

b) tam giác OBC = tam giác  OAC (cmt)

=>OBC=OAC ( 2 góc tương ứng )

mà yBC +OBC =180 ( 2 góc kề bù )

      XAC+OAC=180 ( 2 góc kề bù ) 

=>yBC=xAC

c)tam giác OBC= tam giác OAC (cmt)

=> BCO =OCA ( 2 góc tương ứng )

mà BCO +OCA = 180 ( 2 góc kề bù )

=> BOC = OCA=180 : 2=90

=> AB vuông góc với Oz

12 tháng 12 2020

thank bạn nhiều

a: Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó: ΔOAC=ΔOBC

Suy ra: AC=BC và \(\widehat{OAC}=\widehat{OBC}\)

Ta có: \(\widehat{OAC}+\widehat{xAC}=180^0\)

\(\widehat{OBC}+\widehat{yBC}=180^0\)

mà \(\widehat{OAC}=\widehat{OBC}\)

nên \(\widehat{xAC}=\widehat{yBC}\)

b: Ta có: ΔOAC=ΔOBC

nên CA=CB

Ta có: OA=OB

nên O nằm trên đường trung trực của AB\(\left(1\right)\)

Ta có: CA=CB

nên C nằm trên đường trung trực của AB\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra OC là đường trung trực của AB

hay OC\(\perp\)AB