Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn biểu thức
\(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}\)
bạn chỉ cần nhớ rằng: sin2x+ cos2x= 1 và cotx*tanx= 1 rồi quy đồng lên và làm bình thường
\(=\dfrac{1+cotx-sin^2x}{1+\dfrac{cosx}{sinx}}-\dfrac{cos^2x}{1+\dfrac{sinx}{cosx}}\)
\(=\left(1+\dfrac{cosx}{sinx}-sin^2x\right):\dfrac{sinx+cosx}{sinx}-cos^2x:\dfrac{cosx+sinx}{cosx}\)
\(=\dfrac{sinx+cosx-sin^3x}{sinx}\cdot\dfrac{sinx}{sinx+cosx}-\dfrac{cos^3x}{cosx+sinx}\)
\(=\dfrac{sinx+cosx-sin^3x-cos^3x}{sinx+cosx}\)
\(=\dfrac{\left(sinx+cosx\right)-\left(sinx+cosx\right)\left(sin^2+cos^2x-sinx\cdot cosx\right)}{sinx+cosx}\)
\(=1-1+sinx\cdot cosx=\dfrac{1}{2}sin2x\)
bạn chỉ cần nhớ rằng: sin2x+ cos2x= 1 và cotx*tanx= 1 rồi quy đồng lên và làm bình thường
\(=\dfrac{1+cotx-sin^2x}{1+\dfrac{cosx}{sinx}}-\dfrac{cos^2x}{1+\dfrac{sinx}{cosx}}\)
\(=\left(1+\dfrac{cosx}{sinx}-sin^2x\right):\dfrac{sinx+cosx}{sinx}-cos^2x:\dfrac{cosx+sinx}{cosx}\)
\(=\dfrac{sinx+cosx-sin^3x}{sinx}\cdot\dfrac{sinx}{sinx+cosx}-\dfrac{cos^3x}{cosx+sinx}\)
\(=\dfrac{sinx+cosx-sin^3x-cos^3x}{sinx+cosx}\)
\(=\dfrac{\left(sinx+cosx\right)-\left(sinx+cosx\right)\left(sin^2+cos^2x-sinx\cdot cosx\right)}{sinx+cosx}\)
\(=1-1+sinx\cdot cosx=\dfrac{1}{2}sin2x\)