\(\frac{x}{y}=\frac{3}{4}\)và xy = 192
Giúp mk với !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3}x^3y^4-xy+\frac{1}{6}x^3y^4+3xy-\frac{1}{2}x^3y^4-1\)
\(=\left(\frac{1}{3}x^3y^4+\frac{1}{6}x^3y^4-\frac{1}{2}x^3y^4\right)+\left(3xy-xy\right)-1\)
\(=2xy-1\)
Thay x = 2016 ; y = -1/2016 vào A ta được :
\(A=2\cdot2016\cdot\left(-\frac{1}{2016}\right)-1\)
\(=-2-1\)
\(=-3\)
Vậy giá trị của A = -3 khi x = 2016 ; y = -1/2016
a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)
\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)
\(=\left(x^2-4x+6\right)^2-1\)
\(=\left[\left(x-2\right)^2+2\right]^2-1\)
\(\ge2^2-1=3\)
Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)
Đẳng thức xảy ra khi \(x=2.\)
b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)
Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)
Dấu bằng xảy ra khi \(x=y=3.\)
Ta có\(\frac{x}{2}=\frac{y+4}{8}\)=> 8x=2(y+4) => 4x=y+4 => y=4x-4=4(x-1) (1)
Lại có xy=8 (2)
Thay (1) vào (2) ta được: x.4(x-1)=8 =>x(x-1)=2 => x2 - x =2 => x2 -x -2 =0 => x2 -2x + x -2=0 => x(x-2) +(x-2)=0
=> (x+1)(x-2)=0
=> x+1=0 hoặc x-2=0
=> x= -1 hoặc x=2
Từ đó suy ra y=4(x-1)=4[(-1) -1]= -8 hoặc y=4(x-1)=4(2-1)=4
Ta có \(P=\frac{x^2+y\left(x+y\right)}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}.\frac{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)\(=x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=5;xy=-\frac{1}{2}\Rightarrow P=5^2-2.\left(-\frac{1}{2}\right)=26\)
Vậy P=26
a/ \(P=\frac{1}{\sqrt{xy}}\)
b/ \(x^3=8-6x\)
\(\Rightarrow P=\frac{1}{\sqrt{x\left(x^2+6\right)}}=\frac{1}{\sqrt{x^3+6x}}=\frac{1}{\sqrt{8-6x+6x}}=\frac{1}{2\sqrt{2}}\)
câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu
câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)
\(\frac{x}{y}=\frac{3}{4}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Đặt : \(\frac{x}{3}=\frac{y}{4}=k\)
\(\Rightarrow x=3k;y=4k\)
Khi đó ; \(3k.4k=192\)
\(\Rightarrow12k^2=192\)
\(\Rightarrow k^2=192:12=16\)
\(\Rightarrow k=4\)hoặc \(k=-4\)
\(\Rightarrow x=3.4=12;y=4.4=16\)hoặc
\(x=3.\left(-4\right)=-12;y=4.\left(-4\right)=-16\)
\(\frac{x}{y}=\frac{3}{4}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}\)
đặt x/3 = y/4 = k
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
\(\Rightarrow xy=3k\cdot4k=12k^2\) mà xy = 192
\(\Rightarrow k^2=192\div12\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=\pm4\)
dễ r đó bn