K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

\(\frac{x}{y}=\frac{3}{4}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}\)

Đặt : \(\frac{x}{3}=\frac{y}{4}=k\)

\(\Rightarrow x=3k;y=4k\)

Khi đó ; \(3k.4k=192\)

\(\Rightarrow12k^2=192\)

\(\Rightarrow k^2=192:12=16\)

\(\Rightarrow k=4\)hoặc \(k=-4\)

\(\Rightarrow x=3.4=12;y=4.4=16\)hoặc

\(x=3.\left(-4\right)=-12;y=4.\left(-4\right)=-16\)

14 tháng 10 2018

\(\frac{x}{y}=\frac{3}{4}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}\)

đặt x/3 = y/4 = k

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)

\(\Rightarrow xy=3k\cdot4k=12k^2\) mà xy = 192

\(\Rightarrow k^2=192\div12\)

\(\Rightarrow k^2=16\)

\(\Rightarrow k=\pm4\)

dễ r đó bn

14 tháng 6 2020

\(A=\frac{1}{3}x^3y^4-xy+\frac{1}{6}x^3y^4+3xy-\frac{1}{2}x^3y^4-1\)

\(=\left(\frac{1}{3}x^3y^4+\frac{1}{6}x^3y^4-\frac{1}{2}x^3y^4\right)+\left(3xy-xy\right)-1\)

\(=2xy-1\)

Thay x = 2016 ; y = -1/2016 vào A ta được :

\(A=2\cdot2016\cdot\left(-\frac{1}{2016}\right)-1\)

\(=-2-1\)

\(=-3\)

Vậy giá trị của A = -3 khi x = 2016 ; y = -1/2016

30 tháng 9 2016

Ta có\(\frac{x}{2}=\frac{y+4}{8}\)=> 8x=2(y+4) => 4x=y+4 => y=4x-4=4(x-1) (1)

Lại có xy=8 (2)

Thay (1) vào (2) ta được: x.4(x-1)=8 =>x(x-1)=2 => x- x =2 => x-x -2 =0 => x-2x + x -2=0 => x(x-2) +(x-2)=0

                                                                                                                                          => (x+1)(x-2)=0

                                                                                                                                          => x+1=0 hoặc x-2=0

                                                                                                                                          => x= -1 hoặc x=2

Từ đó suy ra y=4(x-1)=4[(-1) -1]= -8 hoặc y=4(x-1)=4(2-1)=4

31 tháng 8 2016

a, đặt x/4=k suy ra x=4k,y/7=k suy ra y=7k                                                                                                                                            thay x=4k, 7=7k vào xy=112 ta có:                                                                                                                                                4k.7k=112                                                                                                                                                                                     28.k^2=112                                                                                                                                                                                   k^2=112:28                                                                                                                                                                                   k^2=4                                                                                                                                                                                           k  =4,-4                                                                                                                                                                                       TH1 thay k=4 vào ta có:x=4k suy ra x=4.4=4                                                                                                                                                                    y=7k suy ra y=7.4=28                                                                                                                                TH2 là tương tự  , e và f là tương tự    

1 tháng 9 2016

a) x= 4y/7 thay vao có:

4y,y/7 =112

y.y =196

y = 14

x = 4.14/7 = 8

e) tuong tu

f) x2/25 = y2/16

k = 1/9

x = 5/9

y = 4/9

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

20 tháng 8 2018

a)

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

Đến đây dễ rồi

20 tháng 8 2018

b)

\(\left(\frac{x}{3}\right)^2=\frac{x}{3}\cdot\frac{x}{3}=\frac{x}{3}\cdot\frac{y}{4}=\frac{xy}{3\cdot4}=\frac{48}{12}=4=\left(\pm2\right)^2\)

TH1 : \(\frac{x}{3}=\frac{y}{4}=2\)

Sau đó tìm x và y

TH2 : \(\frac{x}{3}=\frac{y}{4}=-2\)

Sau đó lại tìm x và y

Sau cùng kết luận

Học tốt

14 tháng 10 2017

1.

Theo bài ra ta có:

\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10

Ta có:

\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Suy ra:

x = 2 . 8 = 16

y = 2 . 12 = 24

z = 2 . 15 = 30

2/

Đặt \(\frac{x}{2}=\frac{y}{5}=k\)

Ta có :x = 2k ; y = 5k

=>x . y = 2k . 5k = 10k2 = 10 => k= 1 => k = ±1

Thay k = 1 ta có : x = 2 . 1 = 2     ;      y = 5 . 1 = 5

Thay k = -1 ta có : x = 2 . (-1) = -2    ;    y = 5 . (-1) = -5

Vậy x = ±2   ;  y = ±5

3/

Giải:

Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .

Theo bài ra ta có:

\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)

Suy ra :

a = 35 . 9 = 315

b = 35 . 8 = 280

c = 35 . 7 = 245

d = 35 . 6 = 210

Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .

26 tháng 12 2016

=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)\(\left(\frac{y\left(x+y\right)+x^2}{x+y}\right)\)

=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right)\) \(\left(\frac{x^2+xy+y^2}{x+y}\right)\)

=\(\left(\frac{x^2+xy-2y^2-xy+y^2}{x\left(x-y\right)}\right)\left(\frac{1}{x+y}\right)\)

=\(\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}\) =\(\frac{1}{x}\)

4 tháng 2 2019

Tớ làm lần lượt nhé.

Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)

\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)

\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)

\(\frac{y-2}{4}=1\Rightarrow y=6\)

\(\frac{z-3}{5}=1\Rightarrow z=3\)

4 tháng 2 2019

\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)

\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)

\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)

\(\Rightarrow x=7\cdot\frac{200}{35}=40\)

\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)

P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.