1.Cho A= 1+2'1+2'2+2'3+...+ 2'2007 a)Tính 2A. b) Chứng minh :A = 2'2006 -1. 2. A= 1+3+3'2+3'3+3'4+3'5+3'6+3'7 . a)tính 3A B) chứng minh :A=(3'8 -1):2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2^1+2^2+...+2^{2007}\)
\(\Rightarrow2A=2+2^2+...+2^{2008}\)
\(\Rightarrow2A-A=\left(2+2^2+...+2^{2008}\right)-\left(1+2+...+2^{2007}\right)\)
\(\Rightarrow A=2^{2008}-1\)
\(A=1+3+...+3^7\)
\(\Rightarrow3A=3+3^2+...+3^8\)
\(\Rightarrow3A-A=\left(3+3^2+...+3^8\right)-\left(1+3+...+3^7\right)\)
\(\Rightarrow2A=3^8-1\)
\(\Rightarrow A=\frac{3^8-1}{2}\)
Ta có : A = 1 + 2 + 22 + 23 + ...... + 22007
=> 2A = 2 + 22 + 23 + ...... + 22008
b) Suy ra : 2A - A = 22008 - 1
=> A = 22008 - 1
Vậy đpcm
a) ta có: A = 1 + 2^1 + 2^2 + 2^3 + ...+ 2^2007
=> 2A = 2 + 2^2+2^3+2^4+...+2^2008
b) ta có: 2A = 2 + 2^2 + 2^3 + 2^4+...+2^2008
=> 2A-A = 2^2008 - 1
A = 2^2008 - 1
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
I don't now
mik ko biết
sorry
......................
Trả lời:
a, \(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(\Rightarrow2A=2\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)
b, Ta có:
\(2A-A=2+2^2+2^3+2^4+...+2^{2008}-\left(1+2+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2008}-1-2-2^2-2^3-...-2^{2007}\)
\(\Rightarrow A=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+...+\left(2^{2007}-2^{2007}\right)+2^{2008}-1\)
\(\Rightarrow A=2^{2008}-1\) (đpcm)
Cho A= 1 + 2^1 + 2^2 + 2^3 + ....... + 2^2007
a) Tính 2A
suy ra 2A= 2 + 2^2 + 2^3 + 2^4 + ....... + 2^2008
b) Chứng minh A = 2^8 - 1
đang nghĩ b
a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)
b: a<b
=>-2a>-2b
=>-2a-3>-2b-3
c: =x^2+2xy+y^2+y^2+6y+9
=(x+y)^2+(y+3)^2>=0 với mọi x,y
d: a+3>b+3
=>a>b
=>-5a<-5b
=>-5a+1<-5b+1
bn ơi câu 1 ý b viết sai đề kìa