Cho tam giác ABC: Chứng minh: Cos2 A+ Cos2 B+ Cos2 C <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cos^2(a-b)-cos^2(a+b)
=[cos(a-b)-cos(a+b)]*[cos(a-b)+cos(a+b)]
=[cosa*cosb+sina*sinb-cosa*cosb+sina*sinb]*[cosa*cosb+sina*sinb+cosa*cosb-sina*sinb]
=2*sina*sin*b*2*cosa*cosb
=sin2a*sin2b
\(\dfrac{1+cos2a-sin2a}{1+cos2a+sin2a}=\dfrac{2cos^2a-2sina.cosa}{2cos^2a+2sinacosa}\)
\(=\dfrac{2cosa\left(cosa-sina\right)}{2cosa\left(cosa+sina\right)}=\dfrac{cosa-sina}{cosa+sina}=\dfrac{\sqrt{2}sin\left(\dfrac{\pi}{4}-a\right)}{\sqrt{2}cos\left(\dfrac{\pi}{4}-a\right)}=tan\left(\dfrac{\pi}{4}-a\right)\)
\(\dfrac{1+cos2a-cosa}{sin2a-sina}=\dfrac{2cos^2a-cosa}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)
Sửa đề: Cm ΔADB đồng dạng với ΔAEC
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc BAD chung
Do đó: ΔADB đồng dạng với ΔAEC
\(a,A=\left(\cos^220^0+\cos^270^0\right)+\left(\cos^240^0+\cos^250^0\right)\\ A=\left(\cos^220^0+\sin^220^0\right)+\left(\cos^240^0+\sin^240^0\right)=1+1=2\\ b,B=\left(\cos^2\alpha\right)^3+\left(\sin^2\alpha\right)^3+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)\\ B=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)
a)
^MAC = ^MCA = a ---> ^AMH = ^MAC + ^MCA = 2a
sin2a = sinAMH = AH/MA = 2AH/BC = 2(AH/AC).(AC/BC) = 2 sina.cosa
b)
1+cos2a = 1+cosAMH = 1+MH/MA = (MA+MH)/MA = CH/MA = 2CH/BC =
= 2 (CH/AC).(AC/BC) = 2 cosa.cosa = 2 cos^2 (a)
c)
1-cos2a = 1-cosAMH = 1-MH/MA = (MA-MH)/MA = BH/MA = 2BH/BC =
= 2 (BH/AB).(AB/BC) = 2 sinBAH.sinACB = 2 sin^2 (a)
(^BAH = ^ACB = a vì chúng cùng phụ với góc ABC)
Lời giải:
Trước hết ta chứng minh một kết quả sau:
Tam giác $ABC$ có $AB=c; BC=a; CA=b$ thì:
\(a^2=b^2+c^2-2bc\cos A\)
Chứng minh kết quả này bạn tham khảo ở link sau:
Câu hỏi của Nguyễn Thị Mỹ Lệ - Toán lớp 9 | Học trực tuyến
------------------------------
Áp dụng kết quả trên vào bài toán:
\(\cos A=\frac{b^2+c^2-a^2}{2bc}\Rightarrow \cos ^2A=\left(\frac{b^2+c^2-a^2}{2bc}\right)^2\)
Tương tự với \(\cos ^2B; \cos ^2C\) suy ra:
\(M=\left(\frac{b^2+c^2-a^2}{2bc}\right)^2+\left(\frac{c^2+a^2-b^2}{2ac}\right)^2+\left(\frac{a^2+b^2-c^2}{2ab}\right)^2\)
Đặt \((b^2+c^2-a^2; c^2+a^2-b^2; a^2+b^2-c^2)=(x,y,z)\)
\(\Rightarrow \left\{\begin{matrix} a^2=\frac{y+z}{2}\\ b^2=\frac{x+z}{2}\\ c^2=\frac{x+y}{2}\end{matrix}\right.\)
Khi đó: \(M=\frac{x^2}{(x+z)(x+y)}+\frac{y^2}{(y+z)(y+x)}+\frac{z^2}{(z+x)(z+y)}\)
\(M=\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{(x+y)(y+z)(x+z)}\)
\(M=\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{x^2(y+z)+y^2(x+z)+z^2(x+y)+2xyz}< 1\)
Ta có đpcm.
Dài thế